SKIMMED
Quiz' (Work on: Prove sum of frost n odd numbers)
Announcements: HW

- Satisfactory
- PDF
- Test early
- Tutoring
- Bonus

SKIMMED
Notice:

- Complete sentences or equations. Should be able to smoothly read aloud.

Q: Write inductive proof that $7^{n}-1$ is a multiple of 6 for all integers $n \geq 0$.
(Hint: X is a multiple of 6 if $X=6 \cdot \mathrm{~m}$ for some integer. m.)

R Let $P(n)$ be the predicate $7^{n}-1$ is a multiple of 6 . We will prove via induction that $P(n)$ is true for all $n \geq 0$:
$\mathbb{P}^{\mathbb{R}}$ Base Case: $P(0)$ is the statement $7^{0}-1$ is a multiple of 6 . $7^{0}-1=1-1=0=0 \cdot 6$, so the statement is true.
\mathbb{P}
Inductive Case: Let $k \geq 0$. Assume, for induction, that $P(K)$ is true. This means $7^{k}-1=6 \mathrm{~m}$ for some integer m.
Multiplying both sides by 7 , we get

$$
7\left(7^{k}-1\right)=7^{k+1}-7=7.6 \mathrm{~m}
$$

Adding 6 to both sides, we get

$$
7^{k+1}-1=6(7 m+1)
$$

s.Kimmec

Since $7 m-1$ is an integer, $7^{k+1}-1$ is divisible by 6. Thus $P(k+1)$ is true.
(Therefore, by induction on $n, P(n)$ is true for all $n \geq 0$.

Parts of Inductive Proof

1. Set-up (state problem, approach) $<$ Purpose
2. Base-case: (list solution)
3. Inductive step/case: $\left(k^{\text {th }} \rightarrow(k+1)^{\text {th }}\right.$ solution $)$
4. Conclusion (put a bow on it')
(Tell them what youire going to say, say it, tell them what you said)

Proof Tips

- Don't try to figure out all steps before starting proof. The process of writing the proof will help you to figure it out.

$$
\rho P(k) \text { is true }
$$

- Phrase inductive assumption using as much math as possible
e.g. Instead of: $7^{k}-1$ is divisible by 6 , Better: $7^{k}-1=6 m$ for an integer m

Prove: $2^{n}+1 \leq 3^{n}$ for all integers $n \geq 1$. (See slides for Set-up, Base case, intro)
Slightly different approach from class:
Let $k \geq 0$. We assume for induction that $P(k)$ is tree. This means $2^{k}+1 \leq 3^{k}$
Since $2<3$, we can multiply the left side by 2 and the right side by 3 :

$$
2^{k+1}+2 \leq 3^{k+1}
$$

S.KIMMEL

Now since $1<2$

$$
2^{k+1}+1<2^{k+1}+2
$$

So

$$
2^{k+1}+1<3^{k+1}
$$

Therefore, $P(k+1)$ is true.

