Goals:

- Describe graphs using adjacency matrices \&

Announcements

- Next week
- PAZ clarifation

Ways to Represent Graphs in Computer
Adjacency Matrix

		2	3	4
1	0	0	1	1
2	0	0	0	1
	1	0	0	1
	1	1	1	0

Store as array A in memory. E.g. $A[3,4]=1$

- Can learn $A[i, j]$ in $O(1)$ time

Which adjacency matrix represents this graph?

A

0	1	1	1
1	0	0	0
1	0	1	0
1	0	0	0

B

0	1	0	0
1	0	1	0
0	1	0	1
0	0	1	0

c

Adjacency List

Vertex	Adjacent Vertices
1	3,4
2	4
3	1,4
4	$1,2,3$

Store as an array of lists
can access $A[3]$, (the list) in $O(1)$ time, but then to go through list takes time $O(L)$ where L is length of list. Can learn $A[3]$. length io $O(1)$ time.
ex:

$$
\begin{aligned}
& A[1]=\{3,4\} \\
& A[3,2]=4 \\
& \text { A. length }=4
\end{aligned}
$$

Edge List
Can represent graph as list of edges, but worst case time complexity bad for most applications
def: The degree of a vertex is the number of adjacent edges.
def: A vertex v_{1} is adjacent to vertex v_{2} if connected by an edge

SKIMMED
How would you represent a

- directed graph?
- graph with self-loops?
- graph with multiedges?
- graph with weighted edges?

Using Adjacency Matrix / Adjacency List?
Give representations of this graph using both approaches:

v	List
1	$(2,1 / 3),(3,1 / 3),(4,1 / 3)$
2	$(1,1 / 2),(4,1 / 2)$
3	$(4,1)$
4	$(4,1)$

SKIMMED
Input: Adj Matrix A for $G=(V, E)$ (undirected, unweighted, no self loops)
Output:

1. $S=0$
2. for $u, v \in V$

$$
S_{+}=A[u, v]
$$

3. return S
A) $|V|$
B) $|V| x|v|$
c) $|E|$
D) $2|E|$
