SKIMMEL

Goals
• Describe & write proof by contradiction
• Describe & write proof by strong induction
Proof by Contradiction
Proof needs (area)
$$\Gamma P \rightarrow Q$$

to do two (areas) $\Gamma P \rightarrow \Gamma Q$ Most common
things (areas) $\Gamma P \rightarrow \Gamma Q$

Try:
$$73 \times y \in \mathbb{Z}$$
: $\chi^2 = 4y + 2$ (1st step: is $\chi^2 = 4y + 2$
for contradiction, there
Suppose Λ exist $\chi, y \in \mathbb{Z}$: $\chi^2 = 4y + 2$. Then χ^2 is even, so
 χ is even. Thus $\exists m \in \mathbb{Z}$: $\chi = 2m$. Plugging in,
 $4m^2 = 4y + 2$,
 $y = 4m^2 - 2 = m^2 - \frac{1}{2}$
Since m is an integer, $m^2 - \frac{1}{2}$ is not an integer, a
contradiction.

Approaches:

$$Prove P \implies Prove \neg P \rightarrow P$$

 $Prove P \rightarrow Q \implies Prove (PA \neg Q) \rightarrow \neg P \text{ or } Q$
 $Prove P \rightarrow Q \implies Prove (PA \neg Q) \rightarrow \neg P \text{ or } Q$
 $r (A \neg C) = \neg (P \rightarrow Q)$

S.KIMMEL

S.KIMMEL