Learning Goals

- Identify statements and predicates
- Translate English predicates to math predicates
- Create proofs using truth tables

Which are statements?

1. If the input has x bits, this algorithm* uses at most $2 x^{2}$ operations.
2. For all $x>10$, if the input has x bits, this algorithm* uses at most $2 x^{2}$ operations.
3. This sentence (the one you are reading right now) is false.
4. Is QuickSort faster than MergeSort?
*Assume l've given you a description of some particular algorithm.

		$\begin{array}{\|l\|l\|} \hline \text { If } P \text { then } \\ Q " \end{array}$	"P if and only $\text { if } Q^{\prime \prime}$	"P and Q"	"P or Q"	"not $P^{\prime \prime}$
P	Q	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$P \wedge Q$	$\boldsymbol{P} \vee \mathbf{Q}$	$\neg P$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

		"If P then Q"	" P if and only if $Q^{\prime \prime}$	"P and Q"	"P or Q"	"not P"
P	Q	$P \rightarrow Q$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$P \wedge Q$	$P \vee Q$	$\neg P$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

		"If \boldsymbol{P} then \boldsymbol{Q} "	" \boldsymbol{P} if and only if \boldsymbol{Q} "	" \boldsymbol{P} and \boldsymbol{Q} "	" \boldsymbol{P} or \boldsymbol{Q} "	"not \boldsymbol{P} "
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$\boldsymbol{P} \wedge \boldsymbol{Q}$	$\boldsymbol{P} \vee \boldsymbol{Q}$	$\neg \boldsymbol{P}$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

		"If P then Q"	" P if and only if $Q^{\prime \prime}$	"P and Q"	"P or Q"	"not P"
P	Q	$P \rightarrow Q$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$P \wedge Q$	$P \vee Q$	$\neg P$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

		"If \boldsymbol{P} then $\boldsymbol{Q} "$	" \boldsymbol{P} if and only if \boldsymbol{Q} "	" \boldsymbol{P} and \boldsymbol{Q} "	" \boldsymbol{P} or \boldsymbol{Q} "	"not \boldsymbol{P} "
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$\boldsymbol{P} \wedge \boldsymbol{Q}$	$\boldsymbol{P} \vee \boldsymbol{Q}$	$\neg \boldsymbol{P}$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

		$\begin{array}{\|l\|l\|} \hline \text { If } P \text { then } \\ Q " \end{array}$	"P if and only $\text { if } Q^{\prime \prime}$	"P and Q"	"P or Q"	"not $P^{\prime \prime}$
P	Q	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$P \wedge Q$	$\boldsymbol{P} \vee \mathbf{Q}$	$\neg P$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

		$\begin{aligned} & \text { "If } P \text { then } \\ & Q " \end{aligned}$	$\text { " } P \text { if and only }$ $\text { if } Q^{\prime \prime}$	"P and Q"	"P or Q"	"not $P^{\prime \prime}$
P	Q	$P \rightarrow Q$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$	$P \wedge Q$	$\boldsymbol{P} \vee \mathbf{Q}$	$\neg P$
T	T	T	T	T	T	F
T	F	F	F	F	T	F
F	T	T	F	F	T	T
F	F	T	T	F	F	T

Please Memorize (will get practice on Pset 1).
(To speak a new language, you need to memorize some vocab.)

Truth Table Proof

- Prove $(P \rightarrow Q) \vee(Q \rightarrow R)$ is true using a truth table.
- Explain in words why it is true without a truth table.
-Prove: $(P \rightarrow Q) \leftrightarrow(\neg P \vee Q)$ (can extend original table)

Learning Goals

- Identify statements and predicates
- Translate English predicates to math predicates
- Create proofs using truth tables

