- group of unordered elements
- no repeats

Metaphor: Folder on computer

- Contains files + folders
ra set can contain other sets as elements
- Could be empty
- Can't contain same object twice
S.KIMMEL

Notation: $A=\{0,2,5\}$ means " A is the set containing the elements $0,2,5$."

Since order doesn't matter:

$$
\begin{array}{ll}
A=\{2,0,5\} & \text { same } \\
A=\{5,2,0\} & \text { set }
\end{array}
$$

E: $\quad 2 \in A$ is a statement. True if 2 is element of A.
\&: $\quad " \operatorname{dog} " \notin A \equiv \neg " \operatorname{dog} " \in A$. True if "dog" is not an element of A.
$\underset{\text { Sets in }}{\operatorname{Sets}} \quad T=\{x, y,\{g, h\}, k\}$
Sets
an element of a set can be another set
$Q:$ Is $g \in T$? Is $\{g, h\} \in T$?
A) Yes. Yes.
B) Yes. No.
C) No. Yes.
D) N_{0}. No.
elements of T are $x, y,\{g, h\}, k$ *Also $\{x y\} \notin T$
s.Kimmect

Famous Sets

$$
\phi=\text { empty } \text { set }=\{ \}
$$

$\mathbb{N}=$ set of natural numbers $=\{1,2,3, \ldots\}$
\mathbb{Z} = set of integers: $\{\ldots-3,-2,-1,0,1,2,3 \ldots\}$
\mathbb{R} : set of real numbers
$\mathbb{Q}=$ set of rational numbers (fractions)
NOTE: In some books, $\mathbb{N}=\left\{\begin{array}{l}0,1,2,3, \ldots\} \\ T\end{array}\right.$ starts at 0 .

