Counting Infinite Sets
Given infinite time, a computer can do infinitely many thing... but can it do everything?... will answer in 301 . Today, tops.

$$
\left.\begin{array}{lc}
|\mathbb{N}|=\infty & -E \\
\mid\{x>0: x \text { is even }\} \mid=\infty
\end{array}\right\} \text { same infinity? }
$$

Q: $\quad|N|=|E| ?$
A) $|N|<|E|$
B) $|N|=|E|$
c) $|N| \nu|E|$

For sets $A, B,|A|=|B| \Leftrightarrow \exists \quad f: A \rightarrow B$ where f is bijective (surjective \& infective)
To prove $|\mathbb{N}|=|E|$ Create bifective: $\quad f(x)=2 x, \quad f: \mathbb{N} \rightarrow E$ use proof by example
Another way to see bijection:

SKIMMED
Q: Show $|\mathbb{N}|=|\{x \in \mathbb{Z}: x>10\}|$

Show $\quad|\mathbb{N}|=|\mathbb{Z}|$

SKIMMER
Q: Show $|\mathbb{N}|=|\{x \in \mathbb{Z}: x>10\}|$

$$
\begin{aligned}
& f(x)=x+10 \\
& f: \mathbb{N} \rightarrow\{x \in \mathbb{Z}: x>10\}
\end{aligned}
$$

$$
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
d & 1 & d & d & d \\
11 & 12 & 13 & 14 & 15
\end{array} \cdots
$$

Show $|\mathbb{N}|=|\mathbb{Z}|$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\frac{(x-1)}{2} & x \text { odd } \\
\frac{-x}{2} & x \text { even } \\
f: \mathbb{N} \rightarrow \mathbb{Z}
\end{array}\right.
\end{aligned}
$$

We call any set that has the same size as \mathbb{N}, Countably infinite
S.KIMMEL

Fact: $|\mathbb{N}|<|\{x \in \mathbb{R}: 0<x<1\}|$
We call sets that are
Proof uses Diagonalization:

1. QUIET
2. STONE
3. OAFER
4. CLEAR
s. PHONE

Pf: Suppose for contradiction there is a bijection from \mathbb{N} to \mathbb{R}_{2}

$$
\begin{aligned}
& 1 \leftrightarrow 0 \cdot d_{1} d_{12} d_{13} \ldots . \\
& 2 \leftrightarrow 0 \cdot d_{21} d_{22} d_{22} \ldots \\
& 3 \longleftrightarrow 0 \cdot d_{31} d_{32} d_{33} \ldots
\end{aligned} \quad d_{1 j}=j^{\text {th }} \text { decimal place }
$$

$T_{\text {continue to }}$ infuity

$$
\begin{aligned}
& \text { Y continue to infinity never ends } \\
& \frac{1}{2}=0.500000 \ldots \\
& \text { the number } \\
& d_{4} \ldots
\end{aligned}
$$

Now consider the number

$$
d=0 \cdot d_{1} d_{2} d_{3} d_{4} \cdots
$$

SKIMMER
$1 \mapsto 0.115434 \ldots$
$2 \leftrightarrow 0.41198 \ldots \quad 0.445 \ldots$
$3 \leftarrow 0.974422 \ldots$
d is a number in \mathbb{R}_{1}, but d is not in the list! But we claimed all numbers in \mathbb{R}_{1} are on the list \rightarrow contradiction

If $|A|=|\mathbb{N}|$, we call A countably infinite
If $|A|>|\mathbb{N}|$, we call A uncountable infinite

Q: Let F : the set of functions with domain \mathbb{N} and codomain $\{0,1,2,3, \ldots, 9\}$.
Show $|F|>|\mathbb{N}|$

Pf: Suppose for contradiction there is a bijection between F and \mathbb{N}
$1 \leftrightarrow f_{1} \Rightarrow f_{1}(1), f_{1}(2), f_{1}(3) \cdots$
Can create a new
$2 \leftrightarrow f_{2} \Rightarrow f_{2}(1), f_{2}(2), f_{2}(3) \cdots$ function f^{*} that differs from f_{k} on input k. That is $f^{*}(k) \neq f_{k}(k)$.
Thus f^{*} is not on the list, which contradicts the fact that we have a bijection.

