S.KIMMEL

$$|\mathbf{N}| = \infty$$

 $|\{\mathbf{X} = 0: \mathbf{X} \text{ is even}\}| = \infty$ } Same infinity?

Q:
$$|N| = |E|^{7}$$

A) $|N| < |E|$ B) $|N| - |E|$ C) $|N| > |E|$
A

For sets A,B,
$$|A|=|B| \iff \exists f:A \Rightarrow B$$
 where f is
bijective (surjective & injective)
To prove $|N|=|E|$ Create bijective $f(x)=2x$, $f:N \Rightarrow E$
Use proof by example
Anothur way to see bijection: $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 2 & 4 & 6 \\ \end{bmatrix}$

Counting - Diagonalization Page 1

Q: Show
$$|N| = \left\{ x \in \mathbb{Z} : x > 10 \right\}$$

٢

Show
$$||N| = |Z|$$

 $f(x) = \begin{cases} (x-1) \times odd \\ -x + x \text{ even} \\ -x + x \text{ even} \end{cases}$

We call any set that has the same size as IN, Countably infinite Ν,

Skimmel
Fact:
$$|N| < |\{ x \in \mathbb{R} : 0 < x < 1 \end{bmatrix}$$
 \mathbb{R}_{1}
Fact: $|N| < |\{ x \in \mathbb{R} : 0 < x < 1 \end{bmatrix}$ \mathbb{R}_{1}
Roof Uses Diagonalization:
1. QuilET New Word Not on 1:st:
2. STONE
3. 0 AFER $\frac{1}{T} \stackrel{L}{\uparrow} \stackrel{E}{\uparrow} \stackrel{E}{\uparrow} \stackrel{T}{\uparrow} \stackrel{T}{\downarrow} \stackrel{$

$$2 \leftrightarrow 0. d_{21} d_{22} d_{22} \dots$$

$$3 \leftrightarrow 0. d_{31} d_{32} d_{33} \dots$$

$$(ontinue to infinity)$$

$$r uver ends$$

$$\frac{1}{2} = 0.500000....$$

Now consider the number
$$d_{1k} = \begin{cases} 4 & \text{if } d_{kk} \neq 4 \\ d_{1k} = \begin{cases} 0.d_1d_2d_3d_4 & \dots \end{cases}$$

Pf: Suppose for contradiction there is a bijection between
F and IN

$$1 \hookrightarrow f_1 \Rightarrow f_1(i), f_1(2), f_1(3) \dots$$

 $2 \hookrightarrow f_2 \Rightarrow f_2(1), f_2(2), f_2(3) \dots$
Can create a new
function f^* that differs
from f_k on input
k. That is $f^*(k) \neq f_k(k)$.
Thus f^* is not on the
list, which contradicts the
fact that we have a bijection.