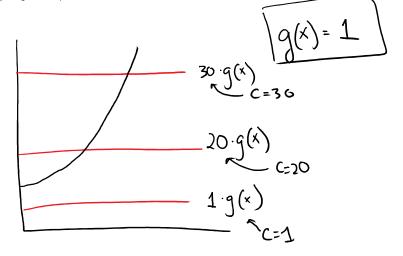
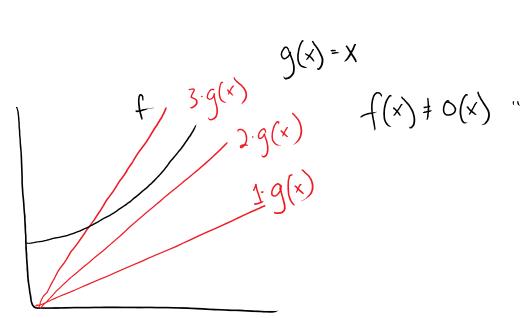
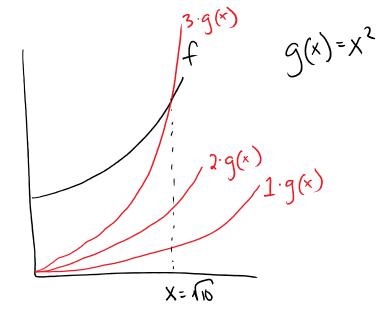
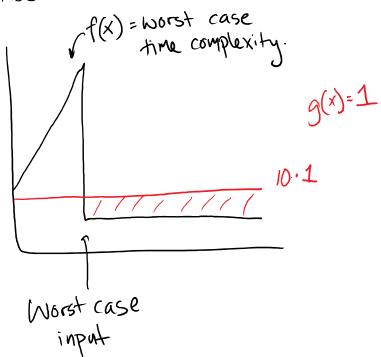

def: Let
$$f,g:\mathbb{Z} \to \mathbb{R}^{t/0}$$
 or $f,g:\mathbb{R} \to \mathbb{R}^{t/0}$ $\mathbb{R}^{t/0}$ $\{x: x \ge 0 \land x \in \mathbb{R}\}$
• Then $f(x)$ is $O(g(x))$ if $\exists k, c \in \mathbb{R}^{t}: \forall x \ge k$,


If of x is big-oh of g of x "big omega"

• $f(x)$ is $\Omega(g(x))$ if $\exists k, c \in \mathbb{R}: \forall x \ge k$


• $f(x) \ge Cg(x)$


• $f(x)$ is $O(g(x))$ if $f(x) = O(g(x))$ and $f(x) = \Omega(g(x))$



f(x) \$ O(1) because at large x, falways goes above g no matter how big we make C

f(x)=0(x2) b/c with f(x) <3x2 for all x>10.

Prove: 2x2+10 + 6(x)

Assume for contradiction that $2x^2+10=0(x)$

This means 3k, CER+ s.t. YX3K, 2x2+10 < CX

Now let y > k and y > c then

2y+10/C b/C y>0, y>K.

But because y>C, we have

 $2y + \frac{10}{y}$ 7 2C, a contradiction.