CS200 - Worksheet 2

```
Prove using induction that the program Sum(A) outputs the sum of an List A
    Input : List A of integers
    Output: Sum of the elements of }A\mathrm{ .
    l=length(A);
    // Base Case
    if l equals 1 then
        return A[1];
    else
        // Recursive step
        return Sum(A[1:l-1])+A[l];
        // A[1:l-1] is a list containing the first l-1 elements of }A\mathrm{ .
    end
```

Algorithm 1: $\operatorname{Sum}(A)$

Solution Let $P(n)$ be the predicate that $\operatorname{Sum}(\mathrm{A})$ outputs the sum of the elements of A for any list of length n. We will prove $P(n)$ is true for all $n \geq 1$.

Base case: when $n=1$, the list only has one element, the sum of all of the elements in the list is just the value of that element. When $n=1$, the base case triggers in line 2 and we return the value of the one element of A, which is correct.

Inductive step: Let $k \geq 1$. We assume for induction that $P(k)$ is true. Let's analyze what happens when the input to Sum is a list with $k+1$ elements. Since $k \geq 1, k+1 \geq 2$, so the algorithm goes to the recursive step in line 5 , and returns $\operatorname{sum}(A[1: l-1])+A[l]$. Since $A[1: l-1]$ is a list with k elements, by inductive assumption, sum $(A[1: l-1])$ correctly returns the sum of the k elements, which is the sum of the first k elements of A. But now the sum of all $k+1$ elements of A is just the sum of the first k elements, plus the final element. This is precisely what line 5 returns, so the outcome is correct.

Therefore, by induction $P(n)$ is true for all $n \geq 1$.

