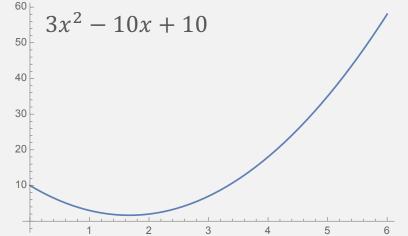
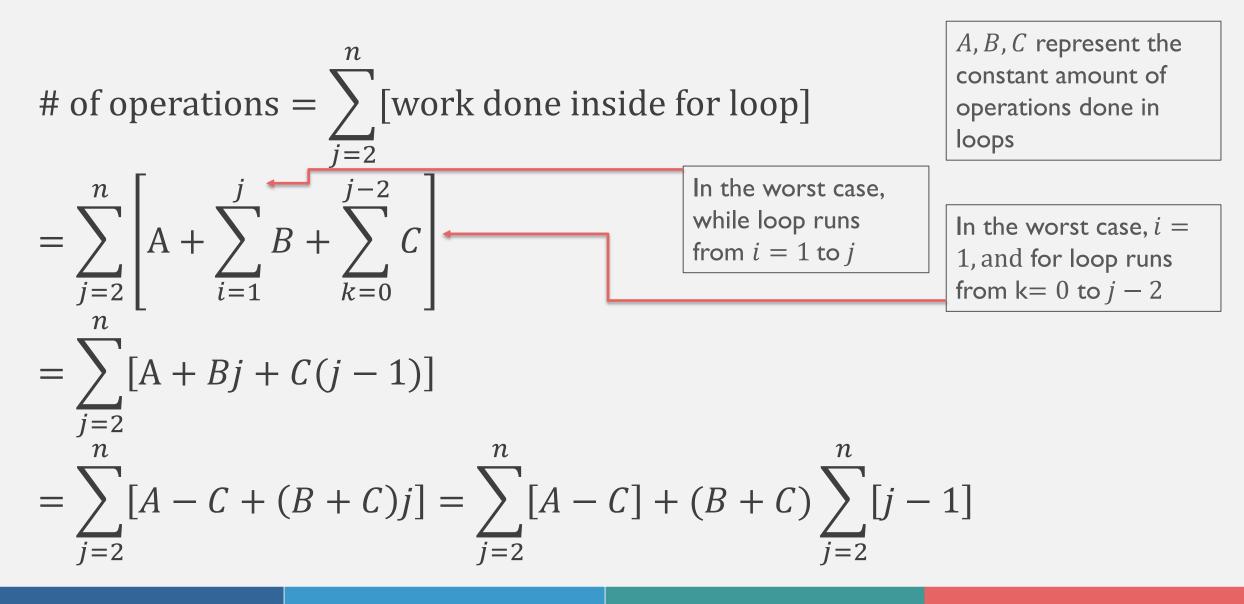


- Analyze the big-O of functions
- Analyze the worst-case run time of algorithms with loops

procedure insertion sort(a_1, a_2, \ldots, a_n : real numbers with $n \ge 2$) **for** j := 2 **to** n Do a detailed calculation of worst case i := 1# of operations while $a_i > a_i$ • Do a rough analysis of # of operations i := i + 1• Find C, k such that $m := a_i$ $3x^2 - 10x + 10 = \Omega(x^2)$ for k := 0 to j - i - 1• Prove $3x^2 - 10x + 10 \neq 0(1)$ $a_{i-k} := a_{i-k-1}$ $a_i := m$ $3x^2 - 10x + 10$ $\{a_1, \ldots, a_n \text{ is in increasing order}\}$



Detailed Analysis



Detailed Analysis

$$= (A - C)(n - 1) + (B + C)\left(\sum_{j=2}^{n} j - \sum_{j=2}^{n} 1\right)$$
$$= (A - C)(n - 1) + (B + C)\left(\frac{(n+2)(n-2)}{2} - n - 1\right)$$
$$= O(n^{2})$$

Rough Analysis

Outer loop runs at most n times.

Two inner loops, each runs at most n times

Otherwise operations are constant.

Total is $O(n^2)$

• Find C, k such that $3x^2 - 10x + 10 = \Omega(x^2)$ C = 1, k = 100

• Prove $3x^2 - 10x + 10 \neq 0(1)$

Assume for contradiction that there exists $k, C \in \mathbb{R}^+$ such that for all $x \ge k, 3x^2 - 10x + 10 \le C$. If we consider a value x where $x \ge 11$, $x \ge k$, and $x \ge C$, we have $3x^2 - 10x + 10 > 3x(x - 10) \ge 3C$. This contradicts that $3x^2 - 10x + 10 \le C$ for all $x \ge k$.