
Goals

• Analyze the big-O of functions
• Analyze the worst-case run time of algorithms with loops

P1: 1

CH03-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 10:24

198 3 / Algorithms

is not less than this element is found or until it has been compared with all j − 1 elements; the j th
element is inserted in the correct position so that the first j elements are sorted. The algorithm
continues until the last element is placed in the correct position relative to the already sorted list
of the first n− 1 elements. The insertion sort is described in pseudocode in Algorithm 5.

EXAMPLE 5 Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5 in increasing order.

Solution: The insertion sort first compares 2 and 3. Because 3 > 2, it places 2 in the first position,
producing the list 2, 3, 4, 1, 5 (the sorted part of the list is shown in color). At this point, 2 and 3
are in the correct order. Next, it inserts the third element, 4, into the already sorted part of the list
by making the comparisons 4 > 2 and 4 > 3. Because 4 > 3, 4 remains in the third position.
At this point, the list is 2, 3, 4, 1, 5 and we know that the ordering of the first three elements
is correct. Next, we find the correct place for the fourth element, 1, among the already sorted
elements, 2, 3, 4. Because 1 < 2, we obtain the list 1, 2, 3, 4, 5. Finally, we insert 5 into the
correct position by successively comparing it to 1, 2, 3, and 4. Because 5 > 4, it stays at the end
of the list, producing the correct order for the entire list. ▲

ALGORITHM 5 The Insertion Sort.

procedure insertion sort(a1, a2, . . . , an: real numbers with n ≥ 2)
for j := 2 to n

i := 1
while aj > ai

i := i + 1
m := aj

for k := 0 to j − i − 1
aj−k := aj−k−1

ai := m

{a1, . . . , an is in increasing order}

Greedy Algorithms

Many algorithms we will study in this book are designed to solve optimization problems.
The goal of such problems is to find a solution to the given problem that either minimizes or

“Greed is good ... Greed
is right, greed works.
Greed clarifies ...” –
spoken by the character
Gordon Gecko in the film
Wall Street.

maximizes the value of some parameter. Optimization problems studied later in this text include
finding a route between two cities with smallest total mileage, determining a way to encode
messages using the fewest bits possible, and finding a set of fiber links between network nodes
using the least amount of fiber.

Surprisingly, one of the simplest approaches often leads to a solution of an optimization
problem. This approach selects the best choice at each step, instead of considering all sequences
of steps that may lead to an optimal solution. Algorithms that make what seems to be the “best”
choice at each step are called greedy algorithms. Once we know that a greedy algorithm finds a
feasible solution, we need to determine whether it has found an optimal solution. (Note that we

You have to prove that a
greedy algorithm always
finds an optimal solution.

call the algoritm “greedy” whether or not it finds an optimal solution.) To do this, we either prove
that the solution is optimal or we show that there is a counterexample where the algorithm yields
a nonoptimal solution. To make these concepts more concrete, we will consider an algorithm
that makes change using coins.

• Do a detailed calculation of worst case
of operations

• Do a rough analysis of # of operations
• Find C, k such that

3𝑥# − 10𝑥 + 10 = Ω 𝑥#
• Prove 3𝑥# − 10𝑥 + 10 ≠ 𝑂(1)

1 2 3 4 5 6

10

20

30

40

50

60

3𝑥# − 10𝑥 + 10

Detailed Analysis

of operations =9
:;#

<

[work done inside for loop]

=9
:;#

<

A +9
D;E

:

𝐵 +9
G;H

:I#

𝐶

=9
:;#

<

A + 𝐵𝑗 + 𝐶(𝑗 − 1)

=9
:;#

<

𝐴 − 𝐶 + 𝐵 + 𝐶 𝑗 =9
:;#

<

𝐴 − 𝐶 + (𝐵 + 𝐶)9
:;#

<

𝑗 − 1

In the worst case,
while loop runs
from 𝑖 = 1 to 𝑗

In the worst case, 𝑖 =
1, and for loop runs
from k= 0 to 𝑗 − 2

𝐴, 𝐵, 𝐶 represent the
constant amount of
operations done in
loops

Detailed Analysis

= 𝐴 − 𝐶 𝑛 − 1 + 𝐵 + 𝐶 ∑:;#< 𝑗 − ∑:;#< 1

= 𝐴 − 𝐶 𝑛 − 1 + 𝐵 + 𝐶 <R# <I#
#

− 𝑛 − 1
= 𝑂 𝑛#

Rough Analysis

Outer loop runs at most n times.
Two inner loops, each runs at most n times
Otherwise operations are constant.
Total is 𝑂 𝑛#

Big-O

• Find C, k such that 3𝑥# − 10𝑥 + 10 = Ω 𝑥#
𝐶 = 1, 𝑘 = 100

• Prove 3𝑥# − 10𝑥 + 10 ≠ 𝑂(1)
Assume for contradiction that there exists 𝑘, 𝐶 ∈ ℝR such that for all
𝑥 ≥ 𝑘, 3𝑥# − 10𝑥 + 10 ≤ 𝐶. If we consider a value 𝑥 where 𝑥 ≥ 11,
𝑥 ≥ 𝑘, and 𝑥 ≥ 𝐶, we have 3𝑥# − 10𝑥 + 10 > 3𝑥 𝑥 − 10 ≥ 3𝐶.This
contradicts that 3𝑥# − 10𝑥 + 10 ≤ 𝐶 for all 𝑥 ≥ 𝑘.

