Goals

- Analyze the big-O of functions
- Analyze the worst-case run time of algorithms with loops
procedure insertion $\operatorname{sort}\left(a_{1}, a_{2}, \ldots, a_{n}:\right.$ real numbers with $\left.n \geq 2\right)$
for $j:=2$ to n
$i:=1$
while $a_{j}>a_{i}$

$$
i:=i+1
$$

$m:=a_{j}$
for $k:=0$ to $j-i-1$

$$
a_{j-k}:=a_{j-k-1}
$$

- Do a detailed calculation of worst case \# of operations
- Do a rough analysis of \# of operations
- Find C, k such that

$$
3 x^{2}-10 x+10=\Omega\left(x^{2}\right)
$$

- Prove $3 x^{2}-10 x+10 \neq O(1)$

$$
a_{i}:=m
$$

$\left\{a_{1}, \ldots, a_{n}\right.$ is in increasing order $\}$

Detailed Analysis

\# of operations $\left.\left.\left.=\sum_{j=2}^{n}\left[\mathrm{~A}+\sum_{i=1}^{n} B+\sum_{k=0}^{n}\right] \quad \begin{array}{l}A, B, C \text { represent the } \\ \text { constant amount of } \\ \text { operations done in } \\ \text { loops }\end{array}\right] \begin{array}{l}\text { In the worst case, } \\ \text { while loop runs } \\ \text { from } i=1 \text { to } j\end{array}\right] \begin{array}{l}\text { In the worst case, } i= \\ 1, \text { and for loop runs } \\ \text { from } k=0 \text { to } j-2\end{array}\right]$
$=\sum_{j=2}^{n}[A+B j+C(j-1)]$
$=\sum_{j=2}^{n}[A-C+(B+C) j]=\sum_{j=2}^{n}[A-C]+(B+C) \sum_{j=2}^{n}[j-1]$

Detailed Analysis

$=(A-C)(n-1)+(B+C)\left(\sum_{j=2}^{n} j-\sum_{j=2}^{n} 1\right)$
$=(A-C)(n-1)+(B+C)\left(\frac{(n+2)(n-2)}{2}-n-1\right)$
$=O\left(n^{2}\right)$

Rough Analysis

Outer loop runs at most n times.
Two inner loops, each runs at most n times
Otherwise operations are constant.
Total is $O\left(n^{2}\right)$

Big-O

- Find C, k such that $3 x^{2}-10 x+10=\Omega\left(x^{2}\right)$

$$
C=1, k=100
$$

- Prove $3 x^{2}-10 x+10 \neq O(1)$

Assume for contradiction that there exists $k, C \in \mathbb{R}^{+}$such that for all $x \geq k, 3 x^{2}-10 x+10 \leq C$. If we consider a value x where $x \geq 11$, $x \geq k$, and $x \geq C$, we have $3 x^{2}-10 x+10>3 x(x-10) \geq 3 C$. This contradicts that $3 x^{2}-10 x+10 \leq C$ for all $x \geq k$.

