Input: Adjacency Matrix A for $G=(V, E), G$ unweighted, undirected Output: ??

1. $S=0$
2. for $i=1$ to $|v|$:
3. for $j=1$ to i :
4. $\quad S=S+A[i, j]$
S. return S

Returns $|E|$

How many operations?

- Use \sum for loops
- Use 1 for $O(1)$ operations
some constant
\# operations $=\sum_{i=1}^{\searrow}+\sum_{i=1}^{|v|}$ work done inside $i^{\text {th }}$ loop iteration]

S.KIMMEL

Evaluate from the inside out:

$$
\begin{aligned}
& \text { \# operations }=D+\sum_{i=1}^{|v|}\left[\sum_{j=1}^{i} K\right] \\
&=D+K \sum_{i=1}^{|v|} i \\
&=D+K[1+2+3+\cdots+|v|] \\
&=D+K(|v|+1) \frac{|v|}{2} \quad \text { You proved when, we } \\
& \text { did induction". } \\
&=O\left(|v|^{2}\right) \quad \text { Arithmetic Series" }
\end{aligned}
$$

"Detailed Calculation"
"Rough Calculation"
Outer loop repeats $O(|V|)$ times $\} O\left(|V|^{2}\right)$ Inner loop repeats $O(|V|)$ times $\left\{\begin{array}{l}\text { operations in } \\ \text { worst case }\end{array}\right.$

SKIMMER

Summation Tricks

$$
\begin{aligned}
\sum_{i=2}^{n}\left(A_{i}+B\right)= & \sum_{i=2}^{n} A i+\sum_{i=2}^{n} B \\
= & A \sum_{i=2}^{n} i+(n-1) B \\
& 2+\frac{\underbrace{+\underbrace{4}_{n+2}+(n-2)}_{n+2}+(n-1)+n}{n}
\end{aligned}
$$

Total: $\frac{(n-1)}{2} \cdot(n+2)$

