$K(n)=\#$ of n-digit \#'s with an even \# of 0 s . Create a recurrence relation for $K(n)$

Strategy

1. Recurrence « Use counting rules
2. Base case

* Think about options for final digit

$$
K(n)=\left[\begin{array}{c}
\text { even \# of O's } \\
\text { end with } 0
\end{array}\right]^{\text {or }}+\left[\begin{array}{c}
\text { even \# of O's } \\
\text { end with not } \\
\frac{1}{2}
\end{array}\right]
$$

Need this part to have odd \# of O's.

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { \# n-1 digits with } \\
\text { odd } \# \text { of o's }
\end{array}\right]=\begin{array}{c}
\text { \# n-1 digit } \\
\# \text { \#'s }
\end{array}} \\
& \text { - \#n-1 digit \#'s } \\
& \text { with even \# of O's } \\
& K(n-1)=10^{n-1}-K(n-1)+9 K(n-1)=10^{n-1}+8 K(n-1)
\end{aligned}
$$

Base case: $K(1)=9 \quad(0$ is an even $\#)$

