Goals

- Apply Permutation and Combination Rules
- Calculate probabilities of events happening.

Announcements:

- Test next week. Material through pset 7, today.
- Will provide practice problems and solutions.
- Extended Office Hours
- Practice practice practice.

Problems

- How many DNA strings of length 4 (strings in $\{C, T, G, A\}^{4}$) have exactly 2 C's or exactly 2 T's? (Use product rule and combinations!)
- How many DNA strings of length 4 (strings in $\{C, T, G, A\}^{4}$) have at least 2 C's or at least 2 T's?

$$
\begin{aligned}
& P(n, k)=\frac{n!}{(n-k)!} \\
& C(n, k)=\frac{n!}{(n-k)!k!}
\end{aligned}
$$

Hint:
Suppose I choose to put Ts in position 3 and position
2. If I put the T into position 3 first and then position

2 , is that different than if I put the T into position 2 first and then position 3? (Answer: No!)

Probability Questions

- Suppose there is a lottery where the winning 4 digit number is chosen randomly. You win money if you match the winning number in at least 3 places. If you buy ticket 0313, what is the probability that you don't win any money?

Probability Questions

- Suppose there is a lottery where the winning 4 digit number is chosen randomly. You win money if you match the winning number in at least 3 places. If you buy ticket 0313, what is the probability that you don't win any money?
- Suppose you have a six-sided weighted die, where 6 is twice as likely to be rolled as every other outcome. What is the probability of rolling at least a 5 ?

Probability Questions

- Midd is in a quidditch series again Skidmore. The first team to win 2 games is the champion.
$>$ Midd has a $1 / 2$ chance of winning the first game.
$>$ If Midd won the previous game, we have a $2 / 3$ chance of winning the next game
$>$ If Midd lost the previous game, we have a I/3 chance of winning the next game
- What is the probability that Midd is the Champion?

Percolation Question

- a, b, c are each present with probability $1 / 3$.

What is the sample space?
What is the probability of the graph being connected? (A graph is connected if there is an path - not necessarily an edge - between every pair of vertices.)

Percolation Question

- a, b, c are each present with probability $1 / 3$.

- Signifies an element of Event

What is the sample space? $\{\{a, b, c\},\{a, b\},\{a, c\},\{a\},\{b, c\},\{b\},\{c\}, \emptyset\}$ Probability the graph is connected? $\operatorname{Pr}(\{a, b, c\}+\operatorname{Pr}(\{a, b\})+\operatorname{Pr}(\{b, c\})+\operatorname{Pr}(\{a, c\})=$

$$
\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{1}{3} \times \frac{2}{3}+\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{3} \times \frac{1}{3}=5 / 27
$$

Percolation Question

$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{1}{3} \times \frac{2}{3}+\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{3} \times \frac{1}{3}=5 / 27$.

- Signifies an element of Event

What is general form for a graph with k edges present and g edges missing, if each edge is included with probability p ? $p^{k}(1-p)^{g}$

