How many DNA strings of length 4, i.e. Strings in $\{C, T, G, A\}^{4}$ have exactly $2 C^{\prime}$ s, or exactly 2 T's?

Subtraction Rule:

$$
\begin{aligned}
& \text { Exactly } 2 \text { c's } \\
& \begin{array}{l}
\text { Exactly } 2 T \text { 's } \quad \begin{array}{l}
2 \text { T's } \\
2 \text { 's } \\
\binom{4}{2} \cdot 3 \cdot 3-\binom{4}{2}
\end{array}, ~
\end{array} \\
& =\binom{4}{2} \cdot 17=\frac{4!}{2!2!} \cdot 17=3 \cdot 17
\end{aligned}
$$

Choose 2 out T, G, A
of 4 positions in isotron C
to have ''s posit'

How many DNA strings of length 4, ie. Strings in $\{C, T, G, A\}^{4}$ have at least $2 C^{\prime} s$, or at least? 2 T's?
Exactly 2 C's or T 's Exactly 3 ''s or $3 T$'s Exactly 4 i's or 4 T 's
2

