S.KIMMEL

Subtraction Rule:

Exactly 2 C's Exactly 2 T's 2T's

$$\begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot 3 \cdot 3 + \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot 3 \cdot 3 + \begin{pmatrix} 4 \\ 2 \end{pmatrix} \cdot 3 \cdot 3 - \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

T can put now C
Choose 2 out T, G, A
of 4 positions in 1st non C
to have C's positi

How Many DNA strings of length 4, i.e. strings
in
$$\{C,T,G,A3^{+}\}$$
 have at least 2 C's, or at least?
2 T's?
Exactly 2 C's or T's or Exactly 3 C's or 3T's Exactly 4 C's
or 9 4 T's
3.17 + 2. $\binom{4}{3}$. 3 + 2