Permutations + Combinations
Permutation Warm-up
Q: There are 10 singles left in Coffin and you and 2 friends want to pick 3 of them. How many ways could you choose rooms.
A) 30
B) 300
C) 720
D) 1000

Combination Warm-4p
Q: There are 10 singles left in Coffin and you and 2 friends want to pick 3 of them. Suppose you just want to pick 3 rooms now, and you'll figure out who will stay where later. How many ways could you pick 3 rooms?
A) $\frac{720}{6}$
B) $\frac{720}{3}$
C) $\frac{720}{2}$
D) 720

Permutations + Combinations
Permutation Warm-up
Q: There are 10 singles left in Coffin and you and 2 friends want to pick 3 of them. How many ways could you choose rooms.
A) 30
B) 300
C) 720
D) 1000

Answer: using product rule
Combination Warm-4p
Q: There are 10 singles left in Coffin and you and 2 friends want to pick 3 of them. Suppose you just want to pick 3 rooms now, and you'll figure out who will stay where later. How many ways could you pick 3 rooms?
A) $\frac{720}{6}$
B) $\frac{720}{3}$
C) $\frac{720}{2}$
D) 720

SKIMMED
We know 720 ways if care about order.

$$
\begin{aligned}
& \begin{array}{l}
\text { If } \\
\text { Care about } \\
\text { order; these }
\end{array}\left\{\begin{array}{l}
(2,3,5),(2,5,3),(3,2,5),(3,5,2) \\
\left(\begin{array}{l}
5,2,3),(5,3,2)
\end{array}\right.
\end{array}\right. \\
& \begin{array}{l}
\text { are all } \\
\text { different }
\end{array} \quad \rho \uparrow \uparrow
\end{aligned}
$$

But if don't care about order, these are all the same. $\quad\{2,3,5\}$
\Rightarrow Over counting by a factor of 6 for each set!

$$
720 / 6=120
$$

SKIMMED
We will learn rules (like product + subtraction rules) to handle these types of situations

$$
\begin{aligned}
& P: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z} \\
& C: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}
\end{aligned}
$$

Cartesian product:
Sets $A, B, C, \ldots K$
Then $A \times B \times C \times \ldots K=\{(a, b, c \ldots k): a \in A \wedge b \in B \wedge$ $c \in C \Lambda \cdots \wedge k \in K\}$
e.g. $S=\{a, b, c, d\}$ then $(a, c) \in S \times S$

Also $\{a, b, c, d\}^{3}=S \times S \times S$ e.g. $(c, c, a) \in S \times S \times S$
Q: Which of the following is in $\mathbb{N} \times \mathbb{N}$
A) $\{1,2\}$
B) $\{1,1\}$
c) $(0,2)$,
D) $(1,1)$

SKIMMED
We will learn rules (like product + subtraction rules) to handle these types of situations

$$
\begin{aligned}
& P: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z} \\
& C: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}
\end{aligned}
$$

Cartesian product:
Sets $A, B, C, \ldots K$
Then $A \times B \times C \times \ldots K=\{(a, b, c \ldots k): a \in A \bigwedge b \in B \Lambda$ $c \in C \wedge \cdots \wedge k \in K\}$
e.g. $S=\{a, b, c, d\}$ then $(a, c) \in S \times S$

Also $\{a, b, c, d\}^{3}=S \times S \times S$ e.g. $(c, c, a) \in S \times S \times S$
Q: Which of the following is in $\mathbb{N} \times \mathbb{N}$
A) $\{1,2\}$
B) $\{1,1\}$
c)
$\bigcap_{0 \notin \mathbb{N}}^{(0,2), \frac{D)(1,1)}{\uparrow}}$

We will learn rules (like product + subtraction rules) to handle these types of situations

$$
\begin{aligned}
& P: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z} \\
& C: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}
\end{aligned}
$$

$P(n, k)=$ \# of ways to pick k distinct elements from a set of n elements, if the order matters.
\uparrow
"n pick k"

$$
{ }_{n} P_{k}{ }^{\prime \prime}
$$

(k-permutation)
$C(n, k)=$ \# of ways to pick k distinct elements from a set of n elements, if the order doesn't matter (k-combination)
"n choose k"

$$
{ }^{n}{ }_{n} C_{k} "
$$

$$
"\binom{n}{k}^{\prime \prime}
$$

Q: What is the mathematical formula for $P(n, k)$?
For $C(n, k)$?
(Randomly choose person to explain)

$$
\begin{aligned}
& m!=m \cdot(m-1) \cdot(m-2) \cdot(m-3) \cdot \cdots 3 \cdot 2 \cdot 1 \\
& 0!=1
\end{aligned}
$$

Use product rule!
A. $\left.P(n, k)=\begin{array}{c}n \cdot(n-1) \cdot(n-2 \\ \uparrow \uparrow\end{array}\right) \cdots\binom{(n-k+1)}{\uparrow}=\frac{n!}{(n-k)!}$
choices choices choices for $1^{\text {st }}$ for $2^{\text {nd }}$ for $3^{\text {red }}$ for loment for element clement
end

$$
C(n, k)=\frac{P(n, k)}{\begin{array}{c}
\text { \# of orderings } \\
\text { of } k \text { elements }
\end{array}} \text { "permutations }=\frac{P(n, k)}{P(k, k)}=\frac{n!0!}{(n-k)!k!}=\frac{n!}{(n-k) \cdot k!}
$$

