
CS200 - Problem Set 4

1. In this class, we learn how to prove certain types of code/algorithms work correctly.
However, for some algorithms, like Artificial Intelligence and Machine Learning algo-
rithms, we haven’t figured out ways to prove they are always correct, and in fact we
know they are often incorrect and tend to be biased in their results. (In other words,
they tend to be more incorrect for certain types of inputs than others.) Additionally,
even if we can prove an algorithm is correct, it might be biased, and even if it is correct
and unbiased it still might not be moral to use such an algorithm. Please read the two
articles in Canvas Files in the folder ”Bias in Algorithms,” and write a brief reflection
on the following themes:

• If a company can’t prove that it’s algorithm is always correct or always unbiased,
is it wrong for the company to deploy that algorithm? When is it OK for a
company to deploy such an algorithm?

• Both humans and algorithms can be biased. Do you think it is better to give
decision making power to a biased person or a biased algorithm?

• Suppose you are working for a company, and they ask you to design an algorithm.
Before you start work, do you think it is important to ask questions like: what
potential harm can this algorithm do if it is used? What other questions do you
think are important to ask before embarking on creating an algorithm?

• If you think an algorithm could potentially cause harm but also could do good,
how would you weight those concerns?

• Are all algorithms biased?

• Who do algorithms benefit? Who is excluded from those benefits?

• Recently, algorithms have been used to help decide prison sentences. Let’s assume
that all bias has been removed from these algorithms. In that case, is it OK to
use such an algorithm? Are there certain applications that you think we should
never use algorithms for?

2. In CS302, you might study an algorithm called “Closest Points,” which takes as input
a set of points on a plane, and returns the pair of points that are closest to each
other. The following is a small part of the larger proof of correctness of the algorithm.
Suppose you know that no two points are closer than distance δ. Further suppose that
you fill the plane with an imaginary grid of squares, where the side of each square is
δ/2. Prove using a proof by contradiction that any square in the grid can contain at
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most one point. (Note: if a point p has x-coordinate px and y-coordinate py and a
point q has x-coordinate qx and y-coordinate qy, then the distance between p and q is√

(px − qx)2 + (py − qy)2.)

3. Explain what is wrong with the logic of each of the following proofs. (You just need to
write a sentence or two for each proof describing the logical error. All errors are with
logic and structure, not with style or lack of explanation.)

(a) [2 points] DM 2.5.14 (Click on the link in a pdf to go to the textbook section
2.5, then go to problem 14)

(b) Proof:
Let P (n) be the predicate that you can make n cents of postage using 3-cent and
7-cent stamps. We will prove using induction that P (n) is true for all n ≥ 14.

Base case: When n = 14, note that you can make 14 cents using two 7-cent
stamps.

Inductive case: Let k ≥ 14. Suppose P (k) is true. Then ∃x, y ∈ Z : x, y ≥ 0
where x corresponds to the number of 3-cent stamps, and y corresponds to the
number of 7-cent stamps) such that

k = 3x+ 7y. (1)

Now we can remove two 7-cent stamps and add five 3-cent stamps. Then we have

3(x+ 5) + 7(y − 2) = 3x+ 15 + 7y − 14 = k + 1. (2)

Thus we can create k + 1-cents worth of postage using 7-cent stamps and 3-cent
stamps.

Therefore, by induction P (n) is true for all n ≥ 14.

(c) Proof:
Let P (n) be the predicate that the sum of the first n odd numbers is n2. We will
prove P (n) is true for all n ≥ 1.

Base case: When n = 1, the sum of the first odd number is 1 = 12, so P (1) is
true.

Inductive step: For k = 2, we look at 1 + 3, which equals 22. For k = 3, we
look at 1 + 3 + 5, which equals 32. Continuing in this way, we see that sum of the
first k odd numbers is k2.

Thus for all n ≥ 1, P (n) is true.

(d) Proof:
Let P (n) be the predicate that the sum of the first n numbers is (n2 + n)/2. We
will prove P (n) is true for all n ≥ 1.

Base case: When n = 1, the sum of the first number is 1, which equals
(12 + 1)/2.

2

http://discretetext.oscarlevin.com/dmoi/sec_seq-induction.html#exercises_seq-induction


Inductive step: Assume P (k) is true for k ≥ 1. This means

P (k) = (k2 + k)/2. (3)

Now if we add k + 1 to both sides, we have

P (k) + (k + 1) = (k2 + k)/2 + (k + 1). (4)

Doing some math, we find that the right hand side is equal to ((k+1)2+(k+1))/2,
so P (k + 1) is true.

Thus for all n ≥ 1, P (n) is true.

(e) Proof:
Let P (n) be the predicate that the sum of the first n numbers is (n2 + n)/2. We
will prove P (n) is true for all n ≥ 1.

Base case: When n = 1, the sum of the first number is 1, which equals
(12 + 1)/2.

Inductive step: Assume P (k) is true for k ≥ 1. Then if we consider P (k + 1),
we have

1 + 2 + · · ·+ k + 1 = ((k + 1)2 + (k + 1))/2. (5)

Now if we subtract k + 1 from both sides and do some algebra, we have

1 + 2 + · · ·+ k = (k2 + k)/2, (6)

which is P (k), which we know is true.

Thus for all n ≥ 1, P (n) is true.

(f) [Challenge] Explain what is wrong with the following inductive proof that all
Middlebury students have the same eye color. I find it easiest to describe the
issue by using the “ladder” analogy from class.

Proof: Let P (n) be the predicate that any group of n Middlebury students have
the same eye color. We will prove P (n) is true for all n ≥ 1.

Base case: P (1) is true because any one Middlebury student has the same eye
color as themselves.

Inductive case: Let k ≥ 1. Assume for induction that any set of k Middlebury
students have the same eye color. Now let’s consider any set of k+ 1 Middlebury
students. If we look at the first k of those k + 1 students, by our inductive
assumption they must all have the same eye color. However, if we look at the last
k of those k + 1 students, by our inductive assumption, they must also all have
the same eye color. Now the second student must be part of the first set of k and
the last set of k, so all k+ 1 students must have the same eye color as this second
student. Thus, any set of k + 1 Middlebury students have the same eye color, so
P (k + 1) is true.

Therefore, by induction, P (n) is true for all n ≥ 1.
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(g) Why is it important to be able to find errors in inductive proofs?

4. Using PS3 #5, rewrite the inductive step of PS4 #3b (on this problem set) to make it
correct.

5. Prove using induction that 2n > n2 whenever n is an integer, and n ≥ 5.

6. [Optional] I’m not assigning any more mathematical induction proofs on this pset,
but if you’d like more practice, there are plenty more in the textbooks!

7. We can use induction to prove a recursive algorithm is correct. However, it involves a
couple of stylistic ingredients that are a little different from a mathematical proof, as
we saw in class. I will prove Square is correct for you, and highlight some important
parts. Then you should prove Log is correct.

Algorithm 1: Square(m)
Input : Non-negative integer m
Output: m2

/* Base Case */

1 if m equals 0 then
2 return 0;
3 else

// Recursive step

4 return 2×m− 1 + Square(m− 1);

5 end

Proof: Let P (n) be the predicate that Square(n) correctly outputs n2. We will prove
using induction that P (n) is true for all n ≥ 0. [NOTE: n is the variables we will use
for induction, while m is the variable we will use when referencing the pseudocode. You
can use the same variables, but it can get confusing in more complicated proofs.]

For the base case, let n = 0, so we need to analyze Square(0). In this case, the If

statement is true at line 1, and the algorithm returns 0. Since 0 = 02, the output is
correct. [NOTE: I’ve analyzed what happens in the code in the base case, and compared
to what I wanted the output to be. I reference line numbers to make it clear what I’m
talking about.]

For the inductive step, let k ≥ 0 and assume P (k) is true. Now let’s consider what
happens when we run Square(k+1). Since k ≥ 0, then k + 1 ≥ 1, so the algorithm
does not trigger the base case but goes to the else case in line 4. [NOTE: You need
to explain why the algorithm does not trigger the base case in the code] and returns
2(k+1)−1+Square((k+1)−1) = 2(k+1)−1+Square(k). By inductive assumption,
Square(k) returns k2. [NOTE: This is the critical inductive step! You need to replace
the output of the recursive call with whatever you can assume the output of the function
should be by inductive assumption. Then once you have done this replacement, you
normally need to do some math, as follows:] Using this assumption, we have that at
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line 4 the algorithm returns

2(k + 1)− 1 + k2 = k2 + 2k + 1 = (k + 1)2. (7)

This is the correct output for input m = k + 1, so P (k + 1) is true.

Therefore, by induction, P (n) is true for all n ≥ 0.

Prove the following algorithm evaluates the log (base 2) of the input. Depending on
your background, you may need to learn or review logarithms and exponentials. Khan
Academy has some useful videos, or there are many other online resources that have
basic info on logarithms and exponentials. Think about what your induction variable
“n” is, before starting.

Algorithm 2: Log(m)
Input : Positive integer m of the form 2g

Output: g
/* Base Case */

1 if m equals 1 then
2 return 0;
3 else

// Recursive step

4 return 1 + Log(m/2);

5 end

8. How long did you spend on this homework?
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