
CS200 - Programming Assignment 1: Computer-Assisted Proofs

Read this entire document carefully before starting the assign-
ment!!

Motivation
A current active field of research at the intersection of computer science and mathematics involves
using computers to help find proofs. While some work is being done to use AI techniques to
write proofs in the way a human does, most computers do “proof by exhaustion,” which is when
a computer tries all possible cases of interest. For example, for a proof of the Pythagoeran triples
problem, a computer had to check a trillion different cases (which took 2 days on a supercomputer).
When a proof is created with the help of a computer, we call it a “computer-assisted proof.”

In this programming assignment, you will write a program to aid in a computer-assisted proof.
It will take in a list of true statements, and one statement whose truth value is unknown (the one
you are trying to prove). The program then tells you if you have enough information to prove the
unknown statement is true or false, or whether you need more information.

Guidelines
Please read and abide by the honor code guidelines in the syllabus.

Please read the rubric so you know how you will be graded. For example, turning in a program
that compiles and runs without errors but does nothing will earn you more points than a program
that is close to working but does not compile or contains errors on running.

If you use someone else’s code or package, please reference the author and where you found it
(both in the beginning comment and at the location in the code). You may use any functions, meth-
ods, or packages that you find useful (as long as they do not implement the full assignment). Part of
the goal of this assignment is for you to find and learn how to use new functions/methods/packages
that are either built-in to the language or external. Thus you should feel free to do an internet
search for how to implement some bit of functionality that you desire.

Put a multi-line comment at the beginning of your program. It should contain:

• Your name

• “Programming Assignment 1”

• The name of anyone you worked with and the nature of your collaboration.

• A list of any external code sources.

• Sample output from your program

• The amount of time (approximately) that you spent on this assignment

1

https://www.nature.com/news/two-hundred-terabyte-maths-proof-is-largest-ever-1.19990
https://www.nature.com/news/two-hundred-terabyte-maths-proof-is-largest-ever-1.19990
http://www.cs.middlebury.edu/~skimmel/Courses/200S19/syllabus.html#HC
http://shelbykimmel.com/Documents/Teaching/Templates/ProgramGrading.pdf


Assignment
Write a program in Python or Java that takes as input a list of strings. Each string should be a
predicate that consists of capital letters (‘A’, ‘B’, ‘C’, . . . , ‘Z’) representing Boolean variable, the
operators ‘and’, ‘or’, and ‘not’, and parentheses. The first string in the list is the statement you
are trying to prove (the test statement). The rest of the strings in the list are statements that
you assume are true (input statements). Your program should output true, false or not enough

information depending on whether the test statement is true, not true, or you don’t have enough
information, given that the input statements are true.

Your program should use an exhaustive search approach. In other words, it should test all
possible assignments of True and False to the variables (like we do in a truth table), exclude
those assignments that are not consistent with your input statements, and for assignments that are
consistent, see if your test statement always has the same truth value.

For example, if the input were (‘not A and C’, ‘(A and B) or not C’, ‘C or B’) then
we would be interested in the following truth table:

A B C (A ∧B) ∨ ¬C C ∨B consistent ¬A ∧ C

T T T T T yes F

T T F T T yes F

T F T F T no

T F F T F no

F T T F T no

F T F T T yes F

F F T F T no

F F F T F no

We see that whenever the input statements are true (those rows that have “yes” in the consistent
column), the value of ¬A ∧ C is false. So in this case, your program should output false because
the test statement is false whenever the input statements are true. (Some rows of the final column
are blank because we don’t care about situations when the input statements are not all true.)

You program should not output such a truth table, but it should virtually go through the rows
of such a table to test the consistency of the input statements and the truth value of the test
statement.

Here is a sample output:

>>> prove(‘not A and C’, ‘(A and B) or not C’, ‘C or B’))

false

>>> prove(‘not A and not C’, ‘(A and B) or not C’, ‘C or B’))

not enough information

>>> prove(‘A or not C’, ‘(A and B) or not C’, ‘C or B’))

true

Tips
For this particular assignment, Python is easier than Java, because of the eval method, which takes
as input a string containing a Boolean expression and outputs the Boolean value of the evaluated
expression. For example, eval("(True or False) and not False") returns True. Java does not
have such a built-in method, but you can use one that someone else has written. (See for example
these options.)

2

https://stackoverflow.com/questions/12203003/boolean-expression-parser-in-java

