Bayu	Dennis	Josh	Walker
Queenie	Kaela	Peter	Tiansheng
Jac	Jiaqi	David	Jack
	Sabrina		
Alex Ethan Jameel	Matt Charlotte Katelyn Youssef	Roody Mark Paul	Cater Fahmid Will

JB	Franklin	Hugo	Deen
Danzan	Cynthia	Gretchen	Ding
Kaylen	Samantha	Siyuan	Michael
Ruben Corey Jake	Jeff Assadou Leah Isha	Majd Axel Ben	Peter Wayne Joe

Goals

- Describe structure/logic of inductive proof
- Write an inductive proof.

Announcements

- Self grading proofs
- TA question
- How is the schedule working?
- Group work reflection now mandatory...will be reading group reflections together.

Group Problem Solving

- I. Put the sentences in the correct order
- 2. Find the errors in the proof
- 3. If you've finished, try writing an inductive proof that the sum of the first n odd numbers is n^2 .

Inductive Proof Recipe:

- Set-up (need a predicate P(n))
- Base Case
- Inductive Case (assume P(k))
- Conclusion

Prove: $2^n - 1 \le 3^n$ for all $n \ge 0$.