Function Exercises

- If we have a function $f: S \to G$, we can use it to create a directed graph $G_f = (V_f, E_f)$. Please describe V_f and E_f using set-builder notation
- Use the words domain/codomain, image and preimage to describe Surjective and Injective in English
- Translate into math: " $f: S \rightarrow G$ is injective"

Function Exercises

- If we have a function f: S → G, we can use it to create a directed graph G_f = (V_f, E_f). Please describe V_f and E_f using set-builder notation
 V_f = {x: x ∈ S ∨ x ∈ G}. E_f = {(x, y): f(x) = y}
- Use the words domain/codomain, image and preimage to describe Surjective and Injective in English
 - Surjective: Every element of the codomain has a preimage
 - Injective: No two elements of the domain have the same image.
- Translate into math: " $f: S \rightarrow G$ is injective"

$$\neg \exists x, y \in S : x \neq y \land f(x) = f(y)$$