Relations
Relation is a generalization of a graph

$$
E \subseteq V \times V
$$ of vertices

Relation $R \subseteq A \times B \quad$ (for $\operatorname{set} A, B$)
"Relation R on A " means $R \subseteq A \times A$

Q: Which of the following relations on \mathbb{Z} has $(1,-1)$ as an element?
A) $\left\{(a, b): a^{2}=b\right\}$
B) $\left\{(a, b): a=b^{2}\right\}$
C) $\{(a, b): a b=1\}$
D) None of above
S.KIMMEL

Q: Which of the following relations on $\mathbb{Z} \times \mathbb{Z}$ has $(1,-1)$ as an element?
A) $\left\{(a, b): a^{2}=b\right\} \leftarrow$ contains $(-1,1)$
B) $\left\{(a, b): a=b^{2}\right\} \leftarrow 1=(-1)^{2}$
c) $\{(a, b): a b=1\}$
D) None of above

$$
\left\{(a, b): a=b^{2}\right\}=\{(0,0),(1,-1),(1,1),(4,2),(4,-2) \ldots\}
$$

3 Properties of Relations on A

- Reflexive: $\forall a \in A,(a, a) \in R$

D So $\left\{(a, b): a=b^{2}\right\}$ is not reflexive because $(2,2) \notin R \quad$ (Proof by counter example "not all")

- Symmetric: $\forall a, b \in A,(a, b) \in R \rightarrow(b, a) \in R$ \square So $\left\{(a, b): a=b^{2}\right\}$ is not symmetric because

$$
(1,-1) \in R \text { but }(-1,1) \notin R
$$

S.KIMMEL

- Transitive : $\forall a, b, c \in A,((a, b) \in R \bigwedge(b, c) \in R \rightarrow$ $(a, c) \in R)$
1] So $\left\{(a, b): a=b^{2}\right\}$ is not transitive because

$$
(16,4) \in R \wedge(4,2) \in R \text { but }(16,2) \notin R
$$

Equality is Reflexive, Symmetric, Transitive:

$$
\text { " }=\text { " }
$$

- $a=a \quad$ (Reflexive)
- $a=b \longrightarrow b=a \quad$ (Symmetric)
- $(a=b \wedge b=c) \rightarrow a=c \quad$ (Transitive)

Equivalence Relation is Reflexive, Symmetric, Transitive If R is an equivalence relation. We can interpret $(a, b) \in R$ as " a is equivalent to b."
$\boxed{\text { divide into non-intersecting subsets }}$
Equivalence Relations partition sets

ex: $A=$ set of all algorithms

$$
R \subseteq A \times A
$$

$R=\{(a, b)$: a and b give
the same output given the same input $\}$

All these sorting
algorithms are
equivalent under R
They form an equivalence class

$$
\Leftrightarrow a_{R}=\{b:(a, b) \in R\}
$$

set of all elements of A that are equivalent to a under R.
S.KIMMEL

Q: What is an equivalence class for the equivalence relation

$$
L=\{(a, b): \text { length }(a)=\text { length }(b)\} \leq S \times S
$$

set of all bit strings
A) $(00,11)$
B) $\{(0,0),(0,1),(1,0),(1,1)\}$
c) $\{00,01,10,11\}$
D) It's not an equivalence relation, so cart get equivalence classes
S.KIMMEL

Q: What is an equivalence class for the equivalence relation

$$
L=\{(a, b): \text { length }(a)=\text { length }(b)\} \leq S \times S
$$

set of all bit strings
A) $(00,11)$
B) $\{(0,0),(0,1),(1,0),(1,1)\}$
C C $\{00,01,10,11\}$
D) It's not an equivalence relation, so cart get equivalence classes

Equivalence classes are sets of bitstrings with the same length

SKIMMER
A) Equivalence Relation
B) Not reflexive
c) Not symmetric
D) Not transitive
1.

$$
R=\{(a, b) \in \mathbb{R} \times \mathbb{R}: a-b \in \mathbb{Z}\}
$$

A) Equivalence Relation

- Reflexive: Let $a \in \mathbb{R}$. Then $a-a=0$, and $0 \in \mathbb{Z}$, so $(a, a) \in \mathbb{R}$.
- Symmetric: Let $a, b \in \mathbb{R}$. Assume $(a, b) \in \mathbb{R}$. Then $a-b \in \mathbb{Z}$, so $b-a \in \mathbb{Z}$, so $(b, a) \in R$.
-Transitive: Let $a, b, c \in \mathbb{R}$. Assume $(a, b),(b, c) \in R$. Then $\exists x, y \in \mathbb{Z}: a-b=x \wedge b-c=y$. Thus $a-c=x+y$
which is an integer so which is an integer, so $(a, c) \in R$
\Rightarrow Equivalence Classes: $X_{R}=\{y+x: y \in \mathbb{Z}\}$

$$
\text { ex: } 7_{R}=\{\ldots-1.3,-.3, .7,1.7, \ldots\}
$$

