Goals:

- Translate quantified predicates
- Apply de Morgan's rules

No sets on quiz. Quiz available after class.

LUNCH TODAY: WHAT I DID THIS SUMMER!

$(m \mid n \equiv m$ divides $n)(M(x, y) \equiv x$ is y 's parent, S is set of all people)

- $B(g) \equiv g$ has a factor greater than 10.

$(m \mid n \equiv m$ divides $n)(M(x, y) \equiv x$ is y 's parent, S is set of all people)

- $B(g) \equiv g$ has a factor greater than 10.
$\exists t \in \mathbb{N}: t \mid g \wedge t>10$
$(m \mid n \equiv m$ divides $n)(M(x, y) \equiv x$ is y 's parent, S is set of all people)
- $R(r, p) \equiv$ every natural number less than r divides p
- $W(a, b) \equiv a$ and b have the same parent
- Hint: Use M
- $K \equiv$ every person who has a sibling or half sibling also has a child
- Hint: Use W
- $R(r, p) \equiv$ every natural number less than r divides p
$\cdot \forall k \in \mathbb{N}, k<r \rightarrow k \mid p$
- $W(a, b) \equiv \mathrm{a}$ and b both have the same parent
$\cdot \exists p \in S: M(p, a) \wedge M(p, b)$
- $K \equiv$ every person who has a sibling or half sibling also has a child
- Hint: Use W
- $\forall x \in S,(\exists y \in S: x \neq y \wedge W(x, y)) \rightarrow$

$$
(\exists w \in S: M(x, w)
$$

