Goals:

- Translate quantified predicates
- Apply de Morgan's rules

No sets on quiz. Quiz available after class.

LUNCH TODAY: WHAT I DID THIS SUMMER!

 $(m|n \equiv m \text{ divides } n) (M(x, y) \equiv x \text{ is } y' \text{s parent}, S \text{ is set of all people})$

• $B(g) \equiv g$ has a factor greater than 10.

 $(m|n \equiv m \text{ divides } n) (M(x, y) \equiv x \text{ is } y' \text{s parent}, S \text{ is set of all people})$

• $B(g) \equiv g$ has a factor greater than 10.

 $\exists t \in \mathbb{N}: t | g \land t > 10$

 $(m|n \equiv m \text{ divides } n) (M(x, y) \equiv x \text{ is } y' \text{s parent}, S \text{ is set of all people})$

- $R(r, p) \equiv$ every natural number less than r divides p
- $W(a, b) \equiv a$ and b have the same parent
 - Hint: Use *M*
- $K \equiv$ every person who has a sibling or half sibling also has a child
 - Hint: Use *W*

• $R(r, p) \equiv$ every natural number less than r divides p

 $\bullet \forall k \in \mathbb{N}, k < r \rightarrow k | p$

- $W(a, b) \equiv a$ and b both have the same parent
 - $\exists p \in S: M(p, a) \land M(p, b)$
- $K \equiv$ every person who has a sibling or half sibling also has a child
 - Hint: Use W

•
$$\forall x \in S, (\exists y \in S : x \neq y \land W(x, y)) \rightarrow (\exists w \in S : M(x, w))$$