S.KIMMEL

Goal: Use counting rules to solve problems
Counting
Q: Why is counting important in computer Science?
A: Security: count \# of possible passwords

- Alg: count steps of algorinm
- count space (memory) used by algorithm
- count time of algorithm
- Network: count connections in a network
- Architecture: count ways of distributing tasks to processors

Product Rule: If a procedure can be broken down into two tasks, with n, ways to do the first task and n_{2} ways to do the second Then there are $n_{1} \times n_{2}$ ways to do the procedure. (If k tasks, multiply ways to do frost by ways to do second by ways to do $3^{r d} \ldots$ up to k.
Subtraction Rule
If you can do a task n_{1} ways or n_{2} ways, then the total number of ways to do a task is $n_{1}+n_{2}$ minus the number of ways common to the two approaches.

Q: Suppose you and you best friend are picking into Coffin house. There are 20 singles left and 3 doubles. If you both choose singles or both share a double, how many options of room choices?
$1^{\text {st }}$ Choice:

$$
\begin{aligned}
& \text { Single or Double } \\
& \text { Sublaction } \\
& \text { rule } \\
& D_{D}^{2} \frac{3}{1} \cdots \cdots \quad \begin{array}{l}
20 \\
\hline
\end{array} \\
& \begin{array}{r}
\text { rule } \\
+\begin{array}{c}
\text { double options } \\
1 \\
\square
\end{array} \square^{2} \begin{array}{l}
\text { options } \\
\text { with } \\
\text { both single } \\
\text { y double }
\end{array}
\end{array}
\end{aligned}
$$

I choose and Friend chooses

$$
20 \times 19
$$

(because I've used up one option)

$$
\begin{aligned}
\text { Total: } & 20.19+3 \\
& =383
\end{aligned}
$$

See slides for problems without solutions

Q: How many 5 -bit strings start with 1 or end with 000 .

$$
\begin{aligned}
& \begin{array}{c}
\text { Start with or End with Both? } \\
1 \text { 00 }
\end{array} \\
& \begin{array}{l}
0000 \\
1 \frac{1}{1} \frac{1}{1} \frac{1}{1}+\quad \begin{array}{l}
000 \\
1 \\
1 \\
2 \times 2 \times 2
\end{array} \\
2 \times 2
\end{array} \\
& \begin{array}{c}
\text { choose } \\
\text { bit and choose and chose } \\
\text { bit and choose } \\
\text { bit }
\end{array} \\
& 2 \times 2 \times 2 \times 2^{\text {bit }}=16+8-4=20
\end{aligned}
$$

SKIMMED
Q: Suppose you are the track coach and you want to test different options for the 4 person relay team. You have S runners: A, B, C, D, and E. If A is on the team, you want her in one of the first 2 positions. If B is on the team, you want her in one of the last 2 positions. How many options will you need to test to find the optimal order?

