SKIMMEL

SKIMMEL

s. Kinnel
Q: Prove it takes n-1 breaks to reduce an n-square
chocolate bar to n individual squares.
A: Let P(n) be the predicate "" We will prove
via strong induction that P(n) is true for n EN,
n 21.
Base case: When you have a 1-square chocolate bar,
it requires 0 breaks to create 1 individual
squares, so P(1) is true.
Inductive case: We assume for induction that P(K) is true
for 15K< N. We will prove P(n)
is true. Since n>1, we can
we can break it into two
Pieces, one with a squares, and one with
b squares, where
$$a+b=N$$
, and

breaks, we have

total breaks.

15acn, and 15bcn. Using our inductive

separate the first piece and (b-1) breats

to separate the second. Adding up all the

(a-1) + (b-1) + (z-a+b-1 = N-1)

assumption, it requires (a-1) breaks to