Strong Induction
Q: Suppose you have a bar of chocolate containing n small joined squares. How many times do you have to break the chocolate along a row or column before you have n separate squares?

always seems to be

$$
n-1!
$$

Proof?

Induction seems good, because after breaking, end up with smaller chocolate bars (smaller problems!)
BuT
smaller bar might not have n^{-1} pieces

Strong Induction Proof Structure
Set-up
Let $P(n)$ be the predicate We will prove $P(n)$ is true for all $n \geq b . c$. bare case
Base-case
Base-case: we prove $P(b . c$.$) is true.$
Inductive case
Inductive case: Assume for strong induction that $P(k)$ is true for all $k: O<k<n$. We now prove
$P(n)$ is true... Rest of proof should not use " k ". use other variables. Should use " n "
Conclusion
By strong induction, we conclude $P(n)$ is true for all $n \geqslant 0$
Metaphor:
 alone is too tight to knock over $k+1$. Need
Base Case: weight of earlier ones
knock first over
S.KIMMEL

Q: Prove it takes $n-1$ breaks to reduce an n-square chocolate bar to n individual squares.

A: Let $P(n)$ be the predicate
. We will prove via strong induction that $P(n)$ is true for $n \in \mathbb{N}$, $n \geqslant 1$.

Base case: When you have a 1-square chocolate bar, it requires O breaks to create 1 individual squares, so $P(1)$ is true.
Inductive Case: We assume for , induction that $P(k)$ is true for $\quad 1 \leq k<n$. We will prove $P(n)$ is true. Since $n>1$, we can
we can break it into two pieces, one with a squares, and one with b squares, where $a+b=n$, and $1 \leq a<n$, and $1 \leq b<n$. Using our inductive assumption, it requires $(a-1)$ breaks to separate the first piece and (b-1) breath to separate the second. Adding up all the breaks, we have

$$
(a-1)+(b-1)+1=a+b-1=n-1 .
$$ total breaks.

