\subset	K	į	MMEL
> .		•	1 1 100

Announcements

I am away wed./Fri

-Friday: in-class guz (Prof Andrews)

- I will post video lectures to website.

You may want to come to class and watch

discuss together

- Self-Grade/Reflections: Due by 3 pm Wed to my Mailbox or submitted on Canvas

2 outside MBH 633

- Extra Office Hours on Wed, Thurs, Friday

Book at Calendly.com/skimme!

Will use Zoom. I will send Meeting ID

Go to Middlebury.zoom.us

Click Join & put in ID

- Extra office hours M,T drop-in

Mesis you get

gets to to choose on specific

gets to to choose on x from

choose y based on x

from any in

prove true

to try to calse

P(x,y) = X+y=10(an get rid of y in predicate using quantifier: P(x) = Yy, X+y=10

Q: Use a direct proof to show: For all a, b, c c Z, if a/b and b/c then a/c.

(a/b means a divides b, that] c e Z: ac=b.

Let $a,b,c\in\mathbb{Z}$. Assume a|b and b|c. This means f=a, $f\in\mathbb{Z}$ such that b=ae and c=bf. Then $c=bf=(ae)f=\alpha(ef)$.

But this means a/c, since C=ak, for k=ef, an integer.

SKIMMEL

P => Q If and only if

(P)Q) \(\lambda\) | logically P \(\in\) Q regularly to

Shicture

For the forward direction, [Proof of P->Q] For the backward direction [Proof of Q->P] S.KIMMEL

Direct Proof - Proof by Contrapositive
Monally used to prove implication like P > Q.
Recall: P - Q is logically equivalent to
Structure:
We prove the contrapositive Assume -Q. Explain, explain, explain. Therefore -P
Also used to prove universal implication: YX (1(x) = u(x)
Structure: Let x be [an arbitrary] element of the domain
We prove the contrapositue.
Assume $\Gamma Q(x)$
Explain, explain.
Therefore TP(X)
,

(See example on hw!)

SKIMMEL What if statement is not of the form P->Q? What if just have P? Suppose you can show PIQITPITQ TP > Q -P>-Q (Arect) $P \rightarrow Q$ (Arect) $P \rightarrow Q$ Proof needs Structure: (Prove P) For contradiction, assume TP We proceed by contraliction. We assume -P. Therefore, Q However Therefore, -Q, a contradiction. Thus, P.