S.KIMMEL

Probability
Robability is all about counting
ex: What is the probability that the outcome of a di
roll is at least 5?
1. Count all outcomes

$$|\{\xi_1, 2, 3, 4, 5, 6\}| = 6$$

2. Count outcomes where rolled value is ≥ 5
 $|\{\xi_5, 6\}| = 2$
3. Take ratio:
 $\frac{2}{6} = \frac{1}{3}$

Terminology
• Sample Space: Set of all possible outcomes
• Event: subset of sample space.

$$def$$
: If all elements in sample space S are
equally likely, the probability of an event E is
 $P_r(E) = \frac{|E|}{|S|}$

(orrect?
(a)
$$3/_{10}4$$
 (b) $10/_{10}4$ (c) $36/_{10}4$ (c) $40/_{10}4$
(f)
Sum rule: $9+9+9+9=36$
or Product rule: $\binom{4}{3} \cdot 9 = 36$

S.KIMMEL

Note: Probability that an event E does NOT happen

$$I - p(E)$$
(Try to prove this using definition of probability!)

0. What is the probability that you DON'T win lottery?
(Don't get 3 or 4 digits the same)
A) 0.99(2 B) 0.99(3 C) 0.99(4 D) 0.99(5

$$\int \frac{36}{900} + \frac{37}{9000} + \frac{37}{9000} = 0.99(3)$$

Probability of Union of Events
(subtraction role)

$$P(E_1 \cup E_2) = \frac{|E_1| + |E_2| - |E_1 \wedge E_2|}{|S|} = Pr(E_1) + P_6(E_2) - Pr(E_1 \wedge E_2)$$

Suppose 6 is twice as likely to be rolled as every
other di outcome.
• What is the probability of 6?
• What is the probability of
$$257$$

• What is the probability of 257
• $P_r(1) + P_r(2) + P_r(3) + P_r(4) + P_r(5) + P_r(6) = 1$
 $X + X + X + X + X + 2X = 1$
 $P_r(4) = 2X = \frac{2}{7}$
 $P_r(5 \circ r 6) = 3X = \frac{3}{7}$