Inductive Proof Recipe:

- Set-up (need a predicate P(n))
- Base Case
- Inductive Case (assume P(k))
- Conclusion

Prove: the sum of the first n odd integers equals n^2 .

Recall the sum of the first n odd integers is $1 + 3 + \dots + (2n - 1)$

• Let P(n) be the predicate the sum of the first n odd numbers equals n^2 . We will prove via induction that P(n) is true for all $n \ge 1$.

Base Case

- Let P(n) be the predicate the sum of the first n odd numbers equals n². We will prove via induction that P(n) is true for all n ≥ 1.
- P(1) is true because the first odd number is 1, and $1^2 = 1$.

Inductive Step

Let $k \ge 1$. Assume for induction that P(k) is true. That is, we assume

$$1 + 3 + \dots + (2k - 1) = k^2$$

The sum of the first k + 1 odd numbers is $1 + 3 + \dots + (2k - 1) + (2(k + 1) - 1)$

Plugging in from the inductive assumption, this is

$$k^{2} + 2(k + 1) - 1 = k^{2} + 2k + 1 = (k + 1)^{2}$$

hus $P(k + 1)$ is true.

• Therefore, by induction on n, P(n) is true for all $n \ge 1$.