1. All of the following questions are regarding the closest points in 2D algorithm.
 (a) What if, in the combine step, we looked at a region within 2δ of the midline. Could the algorithm still work? Would you have to change anything else to compensate?
 (b) What if we looked at a region within $\delta/2$ of the midline. Could the algorithm still work? Would you have to change anything else to compensate?
 (c) Why do we need to maintain separate arrays sorted by X and Y coordinates?

2. (a) Prove the following algorithm is correct:

 Algorithm 1: Maximum(A)

 Input : Array A of unique integers of size n.
 Output: Maximum value in array.

 1 if n equals 1 then
 2 return $A[1]$;
 3 end
 4 mid = $n/2$;
 5 $m_1 =$Maximum($A[1 : mid]$);
 6 $m_2 =$Maximum($A[mid + 1, n]$);
 7 return max{m_1, m_2};

 (b) What is the runtime of the algorithm?

3. Suppose you have a graph T that is a binary tree, with weights on each vertex. Let T_v be the subtree with root at vertex v. Let $S(T_v)$ be the max-weight-independent set of T_v and let $W(T_v)$ be the weight of the max-weight independent set on T_v. We'll design a dynamic programming algorithm for this problem.

 (a) What are the options for $S(T_v)$ in terms of the vertex v?
 (b) For each option, write a recurrence relation for $S(T_v)$ in terms of max-weight-independent sets of subtrees of T_v.
 (c) Use this analysis describe in words (or write pseudocode) how to create a function that fills an array with the values $W(T_v)$ for each v.

4. Explain the idea of an exchange argument proof (the simple, single exchange version) in your own words.