Goals

- Analyze average runtime of QuickSort
- Compare & contrast shortest path algorithms

Reflections: hard... how can I help
Quiz: no quiz, Spring Symposium extra credit

Back to QuickSort:

\[R = \sum_{i} x_{ij} \]

comparisons b/t ith largest

+ jth largest array elements on an element of sample space

Let \(z_i = \text{ith smallest element of A} \)

\[15127 \]

\[\uparrow \uparrow \uparrow \]

\[z_2, z_1, z_3 \]

Q: Under what circumstances are \(z_i \) and \(z_j \) never compared?

A) If \(z_i \) or \(z_j \) is chosen as pivot at some point.

B) If \(z_k \) is chosen as pivot, where \(k > i,j \)

C) If \(z_k \) is chosen as pivot, where \(i < k < j \)

D) If \(z_k \) is chosen as pivot, where \(k < i,j \)
Back to QuickSort:

\[R = \sum_{i,j} X_{i,j} \quad \text{# comparisons b/t } i^{\text{th}} \text{ largest } \\
\quad \quad + j^{\text{th}} \text{ largest array elements on element of sample space} \]

Let \(z_i = i^{\text{th}} \) largest element of \(A \)

\[
\begin{bmatrix}
5 & 2 & 7 \\
\uparrow & \uparrow & \uparrow \\
2 & z_i & z_3
\end{bmatrix}
\]

\textbf{Story of } z_i, z_j:

\begin{itemize}
 \item As long as pivot = \(z_k \) with \(k > i, j \) or \(k < i, j \), \(z_i, z_j \) get put together into same subarray for recursion. (No comparisons)
 \item Something interesting happens when pivot is \(z_k \) with \(i \leq k \leq j \)
\end{itemize}

Because \(X_{i,j} \) is 0 or 1, this means \(X_{i,j} \) is an indicator random variable.

\(k = i \text{ or } j \)

\(z_i, z_j \) 1 comparison

No further comparisons because pivot is not included in recursive calls

\(i < k < j \)

\(z_i, z_j \) 0 comparisons

No further comparisons because \(z_i \) and \(z_j \) separated: \(z_i \) in \(A_L \), \(z_j \) in \(A_R \).
Back to QuickSort:

\[R = \sum_{ij} X_{ij} \]
\(\) # comparisons b/t \(i \)th largest + \(j \)th largest array elements on an element of sample space

Let \(z_i = i \)th smallest element of \(A \)
\[
\begin{array}{c}
5 \\
\uparrow \uparrow \uparrow \\
2_1, 2, 2_3
\end{array}
\]

Calculate Average # of comparisons

\[E[R] = \sum_{ij} E[X_{ij}] \]

Because indicator random variable

\[E[X_{ij}] = \sum_{s \in S} pr(s) X_{ij}(s) = \sum_{s \in S: X_{ij}(s)=1} pr(s) \]

= \(Pr(z_i, z_j \text{ are compared}) \)
Choice of pivot only has an effect if chosen from

Size of this chunk is \(j-i+1 \)

Eventually, will have to choose a pivot from here.

Probability (\(z_i \) or \(z_j \) compared) = \(\Pr(\text{\(z_i \) or \(z_j \) chosen as pivot if an element of \{\(z_i \), ..., \(z_j \}\} is chosen as pivot}) \)

Probability of

* 1 comparison: \(\frac{2}{j-i+1} \) b/c 2 options \((z_i \text{ or } z_j) \) out of \(j-i+1 \) options give 1 comparison.

* 0 comparisons: \(\frac{j-i-1}{j-i+1} = 1 - \frac{2}{j-i+1} \)

\(\Pr[\text{1 comparison}] = \frac{2}{j-i+1} \)
Final Calculation:

\[E[R] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr[z_i, z_j \text{ compared}] \]

\[E[R] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \]

\[\leq \sum_{i=1}^{n-1} 2 \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n-i} \right) \]

\[\leq \sum_{i=1}^{n-1} 2 \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} \right) \quad (\text{added extra positive terms to sum}) \]

\[\leq 2 \ln(n) \leq \ln(n) \quad \text{Useful fact:} \]

\[\sum_{j=1}^{n} \frac{1}{j} \leq \ln(n) \]

Average runtime: \(O(\text{Average # of comparisons}) = O(n \log n) \)
Shortest Paths

Input: Unweighted, undirected Graph $G=(V,E)$, starting node $s \in V$
Output: Array l, $l[v] =$ length of shortest path from s
to v.
($l[v] = \infty$ if no path from s to v)

Applications? Maps, social connections, financial transactions

Idea: explore each distance layer in turn:

\[
\begin{align*}
l[v] &= \infty \quad \forall \ v \in V \\
\text{vis}[v] &= \text{false} \quad \forall \ v \in V \\
A &= \{\} \\
A.\text{add}(s) \\
l[s] &= 0 \\
\text{vis}[s] &= \text{true}
\end{align*}
\]

\[
\text{While (A is not empty) }
\]
\[
\quad - \ v = A.\text{pop} \\
\quad - \text{for } w: \{v,w\} \in E : \\
\quad \quad \text{If } (\text{vis}[w] = \text{false}) : \\
\quad \quad \quad \text{A.\text{add}(w)} \\
\quad \quad \quad \text{vis}[w] = \text{true} \\
\quad \quad \quad l[w] = l[v] + 1
\]

Similar?
Breadth-First Search!

If remove lines involving l, have BFS
Q: *Will the algorithm be correct under following conditions?*
(If not always, provide counter example.)
- directed
- positive weighted edges
- negative weights (uniform)

* If edge weights are positive integers, how could you alter algorithm to make it work?
* What is time complexity of graph search if you store G in adjacency list data structure?