Learning Goals

• Describe MWIS & Scheduling problems
• Design a recurrence relation for MWIS
• Understand process of designing and testing a greedy algorithm.

Sample Syllabus Quiz Question:
Q: Which of the following problem set parts are graded for correctness?
 A. Rough Draft.
 B. Main PSet Submission
 C. Self Grade
 D. None of them - All graded on effort, although you will get the most out of self-grade if you try for accuracy.

Assorted Stuff
• Rough Draft (due today) — anything that shows some effort
• PSet Due Sunday @ 9 pm (tutoring 7-9 Sunday, Wed)
• Syllabus Quiz Monday
• Scheduling Changes → will discuss next week
Max-Weight Independent Set Problem (MWISP)

Input: Graph (V, E) and weight function $w: V \rightarrow \mathbb{Z}^+$

Output: $S \subseteq V$ s.t. if $(v_i, v_j) \in E$, \(v_i, v_j \) can't both be in S.

\[w(S) = \sum_{v \in V} w(v) \text{ is maximized} \quad \text{max weight} \]

```
This set is Max Weight Ind. Set (MWIS)
```

```
Applications
```

- WiFi transmitters/cell towers
 - Tower i has $n(i)$ packets to broadcast
 - If two towers are within 2 miles and broadcast at same time, causes interference

Dynamic Programming

Recurrence Relation

Algorithm
Q: How to use MWIS to determine which towers should transmit? What is \(V, E \) ? What is \(w : V \rightarrow \mathbb{R} \)?

MWISP on Path Graph

Q: What is MWIS of

\[
\begin{align*}
&v_1 \quad v_2 \quad v_3 \quad v_4 \quad \ldots \quad v_k \\
&5 \quad 7 \quad 6 \quad 1 \quad \ldots
\end{align*}
\]

\[
\begin{align*}
&v_1 \quad v_2 \quad v_3 \quad v_4 \\
&1 \quad 6 \quad 7 \quad 5
\end{align*}
\]

A) 11 B) 13 C) 19 D) None exists
Q: How to use MWIS to determine which towers should transmit? What is \(V, E \)? What is \(w: V \rightarrow \mathbb{R}^+ \)?

- Vertices are towers
- Put an edge b/t any two vertices that are 2 miles or less apart

\[w(i) = n(i) \]

MWISP on Path Graph

Q: What is MWIS of

\[
\begin{align*}
V_1 & \quad V_2 & \quad V_3 & \quad V_4 & \quad V_5 \\
1 & \quad 6 & \quad 7 & \quad 5 & \\
\end{align*}
\]

A) 11
B) 13
C) 19
D) None exists

\[
\begin{align*}
\text{Best} & \\
V_1 & \quad V_2 & \quad V_3 & \quad V_4 \\
1 & \quad 6 & \quad 7 & \quad 5 \\
\end{align*}
\]

\[
\begin{align*}
w(\{V_1, V_3\}) & \rightarrow 8 \\
w(\{V_2, V_4\}) & \rightarrow 11 \\
w(\{V_1, V_4\}) & \rightarrow 6 \\
\end{align*}
\]
Instead: Let's create a recurrence relation for the MWIS.
• Previous Example of Recurrence Relation
 Let \(T(n) \) be \# of \(n \) bit strings with even \# of 1’s.

\[
\begin{array}{c}
\begin{array}{c}
\cdots \quad 0 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
1 \\
\end{array}
\end{array}
\]

Final bit has two options, 0 or 1

\[
T(n) = T(n-1) + \quad \text{if 0}
\]

\[
\text{if 1}
\]

Now to MWIS Problem:

1. Consider options for optimal solution \(S \)

Last vertex has two options

i) \(v_n \notin S \)

ii) \(v_n \in S \)
2. Relate S to solution of smaller problem for each option

Last vertex has two options
i) $v_n \notin S$
ii) $v_n \in S$

i) If $v_n \notin S$, □ is MWIS on the graph □

Why? (Try proof by contradiction.)

ii) $v_n \in S$, □ is MWIS on the graph □

Why? (Try proof by contradiction.)
2. Relate S to solution of smaller problem for each option

For each option:

i) If $v_n \notin S$, S is MWIS on G_n.

 Pf: S is a valid indep. set for G_n, so need to show has max weight.
 Suppose for contradiction.
 S' is an indep. set of G_{n-1} with larger weight than S.
 Then S' is also a larger weight indep. set on G_n than S, so S is not MWIS of G_n, a contradiction.

ii) $v_n \in S$, $S - v_n$ is MWIS on G_{n-2}.

 Pf: $S - v_n$ is a valid indep. set for G_{n-2}, so need to show has max weight.
 Suppose for contradiction.
 S' is an indep. set of G_{n-2} with larger weight than $S - v_n$.
 Then $S' \cup v_n$ will have larger weight than S on G_n, a contradiction.