Goals

- Describe why Huffman's algorithm is correct
- Analyze runtime of Huffman's alg.
- Describe relationship between algorithm + data structure

Midterm

- Up to ps 8 (no Huffman, no shortest path)
- Post to Canvas Discussion tonight to influence Thurs. review
- Same system as first midterm, 1 handwritten cheat sheet (1 side), etc.

Huffman's Algorithm

Initialize each i ∈ Σ as tree with associated probability

While (>1 tree to be merged)
- Find 2 trees with smallest probability
- Merge into new tree with new probability = sum of old probabilities
Thm: Huffman's Algorithm Produces a Tree T with minimum average length

$$L(T) = \sum_{i \in \Sigma} p_i [\text{depth node } i]\$$

Pf: Induction on $n = |\Sigma|$. Assume $n \geq 2$

Base Case: If $n = 2$, $\emptyset \cup \emptyset$ is optimal

Inductive Step: Let a, b be the letters with the lowest frequency.

1. There is a tree with optimal L s.t. a, b are siblings. [Use exchange!] For contradiction, suppose T^* is optimal tree.

Let T be tree where $x \leftrightarrow a$

Let x, y be siblings at deepest level of tree
Q: What is $L(T^*) - L(T)$?

$L(T^*) = \sum_{i \in \Sigma - \{a, b, x, y\}} p_i d_i + p_a d_a + p_b d_b + (p_x, p_y) d_{x/y}$

$L(T) = \sum_{i \in \Sigma - \{a, b, x, y\}} p_i d_i + p_a d_a + p_b d_b + p_x d_{x/y}$

$L(T^*) - L(T) = p_x (d_{x/y} - d_a) + p_y (d_{x/y} - d_b) + p_a (d_a - d_{x/y}) + p_b (d_b - p_{x/y})$

\[= (p_x - p_a) (d_{x/y} - d_a) + (p_y - p_b) (d_{x/y} - d_b)\]

So new tree T must also have optimal average length, but $T \in X_{ab}$. So there is always an optimal tree with a, b siblings.
From [1], without loss of generality, there is an optimal tree T where a, b are siblings.

Let T' be a tree that is same as T, but with

replaced by $\frac{a}{b}$

one letter $\frac{a}{b}$ with probability p_{reps}.
Q: What is \(L(T) - L(T') \)

A: \[
L(T') = \sum_{i \in \mathcal{S} - \{a, b\}} p_i d_i + (p_a + p_b) d_{a/b}
\]

\[
L(T) = \sum_{i \in \mathcal{S} - \{a, b\}} p_i d_i + (p_a + p_b) (d_{a/b} + 1)
\]

\[
L(T) - L(T') = p_a + p_b
\]

Tree with minimum \(L \) in \(X_{ab} \), can be found by finding tree with minimum \(L \) in \(X_{ab} \). By inductive assumption, Huffman does this! and replacing \(\circ \) with \(\circ \).
Runtime

Initialize each $i \in \Sigma$ as tree

While (> 1 tree to be merged)
 * Find 2 trees with smallest probability
 * Merge into new tree with new probability $=$ sum of old probabilities

Q. What is the runtime?

A) $O(n)$ B) $O(n \log n)$ C) $O(n^2)$ D) $O(n^2 \log n)$
Runtime

Initialize each \(i \in \Sigma \) as tree \(\leftarrow O(n) \)

While \(> 1 \) tree to be merged \(\leftarrow O(n) \) reps
 - Find 2 trees with smallest probability
 - Merge into new tree with new probability \(\rightarrow O(1) \)
 - Reinsert into heap: \(O(\log(n)) \)

A. What is the runtime?

A) \(O(n) \) B) \(O(n \log n) \) C) \(O(n^2) \) D) \(O(n^2 \log n) \)

Keep finding min over in over M a changing data structure

Use min-heap
 - Initialize n elements in \(O(n) \)
 - Extract min elt in \(O(\log n) \)
 - Insert a new elt in \(O(\log n) \)

Using different data structure, can achieve \(O(n \log \log n) \)

van Emde Boas tree