Goals
- Describe pre-fix free codes & why they are desirable
- Describe Huffman's algorithm
- Prove correctness of Huffman's algorithm

Reminder: Spring Symposium Bonus

QuickSort Clarification

I wrote:

\[\Pr(z_i, z_j \text{ compared}) = \Pr(z_i, z_j \text{ chosen as pivot} \mid \text{an element of } \{z_i, z_{i+1}, \ldots, z_j\} \text{ chosen as pivot}) \]

but \[P(A) = P(A \mid B)P(B) \] (Bayes Rule)

I should have written:

\[\Pr(z_i, z_j \text{ compared}) = \Pr(z_i, z_j \text{ chosen as pivot} \mid \text{an element of } \{z_i, z_{i+1}, \ldots, z_j\} \text{ chosen as pivot}) \times \Pr(\text{an element of } \{z_i, z_{i+1}, \ldots, z_j\} \text{ chosen as pivot}) \]

Equals 1

Because we get to subarrays of size 1, one is eventually always chosen as a pivot.
Huffman Codes

Binary code: \(f: \Sigma \rightarrow \{0,1,\}^* \) (f maps characters to bit strings)

\[\Sigma = \{a, b, \ldots, z, \ldots, 0, \ldots, 9 \} \]

32 letters \(\rightarrow \) each letter gets unique string from \(\{0,1,3,5\} \) \(\rightarrow \) ASCII

e.g. \(\Sigma = \{a, b, c\} \)

Suppose you have a message where a occurs 50%, b occurs 30%, c occurs 20%.

Q. What is the best and most efficient binary encoding of a, b, c to send message?

A) \(a \rightarrow 00 \)
\(b \rightarrow 01 \)
\(c \rightarrow 10 \)

B) \(a \rightarrow 0 \)
\(b \rightarrow 1 \)
\(c \rightarrow 01 \)

C) \(a = 0 \)
\(b = 11 \)
\(c = 01 \)

D) \(a = 0 \)
\(b = 10 \)
\(c = 11 \)

Average length: 2

\[0110 = abba \] or \(cba \)

\[\text{Length of encoding of } a = \text{prob of } a \times \text{length of encoding of } a \]

\[\text{Average length} = L(f) = \sum_{i \in \Sigma} l(f(i)) p_i \]

\[0110 \]
\[\text{Start of b, end of c} \]
\[\text{Need to go to } y \text{ to figure out} \]

\[0111 \]
\[a \ c \ a \]

average length \(= 5 \cdot 1 + 5 \cdot 2 = 1.5 \)
Prefix-free code: \(\forall i, j \in \Sigma, f(i) \) is not prefix of \(f(j) \)

\[
\begin{array}{c|c}
 i & f(i) \\
 \hline
 a & 0 \\
 b & 11 \\
 c & 01 \\
\end{array}
\]

\(f(a) \) is prefix for \(f(c) \)

Don't know if 0 is a or start of c

Problem: Given probability \(p_i \) for each \(i \in \Sigma \)
What is prefix-free code w/ smallest average length?

Subproblem: how to ensure prefix-free?

Fact: Binary codes \(\leftrightarrow \) binary trees

- \(\forall b \in \Sigma \), there is a vertex with label \(b \)
- Encoding of \(b \) is path from root to vertex \(b \)
Q: Create trees for each of the following codes. What property must the tree have to correspond to prefix-free code?

B) \(a \rightarrow 0 \)
\(b \rightarrow 1 \)
\(c \rightarrow 01 \)

C) \(a \rightarrow 0 \)
\(b \rightarrow 11 \)
\(c \rightarrow 01 \)

D) \(a \rightarrow 0 \)
\(b \rightarrow 10 \)
\(c \rightarrow 11 \)

Prefix-free codes correspond to trees where no letter node is ancestor of any other.
\Rightarrow all letters are at leaves

As desired. Decoding is simple: follow path until hit a leaf.

Ex: 010110 \rightarrow a b c a

\text{Using this tree}
Optimal Encoding Problem

Input: \(P_i \) for each \(i \in \Sigma \)

Output: [Binary tree \(T \) with all letters at leaves] & Smallest average length: \(L(T) = \sum_{i \in \Sigma} P_i \cdot \text{depth of node } i \)

Bottom up Approach: Merge trees

Always get prefix free tree!
Q: What is the length of $f(i)$ for $i \in \Sigma$ if use merging strategy to create tree

A) # of mergers involving i

B) $\log_2 i$

C) $2 ^{\text{# of mergers involving } i}$

D) # of siblings of node i

Q:

(a) p_a

(b) p_b

(c) p_c

\[p = ? \]

Prob of entering subtree is prob of b or c occurring

$P(b \lor c) = P(b) + P(c)$

(Prob of union of disjoint events)
Huffman's Strategy

While (> 1 tree to be merged)
 • Find 2 trees with smallest probability
 • Merge into new tree with new probability = sum of old probabilities

Q: Create tree using this algorithm for
 30% 25% 20% 15% 10%
 a b c d e

 36% 25% 20% 25%
 a b c d e

 30%
 a

 45%
 a

 45%
 a

What is average length?
Write + encode a message

\[L = 1.3 + 0.15 \times 3 + 0.75 \times 2 = 2.25 \]
Thm: Huffman’s Algorithm Produces a Tree \(T \) with minimum average length

\[
L(T) = \sum_{i \in \Sigma} P_i [\text{depth node } i] \]

Pf: Induction on \(n = |\Sigma| \). Assume \(n \geq 2 \)

Base Case: If \(n = 2 \), \(\emptyset \) is optimal

Inductive Step: Let \(a, b \) be the letters with the lowest frequency.

\[1. \] There is a tree with optimal \(L \) s.t. \(a, b \) are siblings. [Use exchange!] For contradiction, suppose \(T^* \) is optimal tree.

Let \(x, y \) be siblings at deepest level of tree

Let \(T \) be tree where \(x \leftrightarrow a \)
\(y \leftrightarrow b \)
Q. What is \(L(T^*) - L(T) \)?

\[
L(T^*) = \sum_{i \in \Sigma - \{a, b, x, y\}} p_i d_i + p_a d_a + p_b d_b + \left(p_x', p_y\right) d_{x/y} \\
L(T) = \sum_{i \in \Sigma - \{a, b, x, y\}} p_i d_i + p_a d_a + p_b d_b + p_x d_x + p_y d_y \\
L(T^*) - L(T) = p_x (d_{x/y} - d_a) + p_y (d_{x/y} - d_b) + p_a (d_a - d_{x/y}) \\
+ p_b (d_b - p_{x/y}) \\
= (p_x - p_a) (d_{x/y} - d_a) + (p_y - p_b) (d_{x/y} - d_b)
\]

So new tree \(T \) must also have optimal average length, but \(T \in X_{ab} \). So there is always an optimal tree with \(a, b \) siblings.
From [1], without loss of generality, there is an optimal tree T where a/b are siblings.

Let T' be the tree that is same as T, but with a/b replaced by

one letter a/b with probability p_{ab}.

Huffman Codes Page 10
Q: What is $L(T) - L(T')$

$A: \quad L(T') = \sum_{i \in \Sigma - \{a,b\}} p_i d_i + (p_a + p_b) d_{a/b}^\prime$

$\quad L(T) = \sum_{i \in \Sigma - \{a,b\}} p_i d_i + (p_a + p_b)(d_{a/b} + 1)$

$\quad L(T) - L(T') = p_a + p_b$

Set of all trees where a,b are siblings

Tree with minimum L in X_{ab}, can be found by finding tree with minimum L in X_{ab}

By inductive assumption, Huffman does this! and replacing a/b with a/b.