Goals

- Prove correctness of greedy scheduling
- Prove correctness of loops using loop invariants

Recall

Scheduling: n jobs

- t_i: time to run job i
- w_i: weight (importance) of job i
- C_i: time to complete job i

Want to minimize $A = \sum w_i C_i$

We’ve tried several greedy algorithms, we think

$$f(w, t) = \frac{w}{t}$$

is optimal (order by largest f)
Thm: Greedy algorithm with \(f = \frac{w_i}{t_i} \) is optimal for objective function \(\sum w_i \cdot c_i \).

Pf: \textsc{Exchange} argument \(\text{(Proof by Contradiction)} \)

Assume \(\frac{w_i}{t_i} \) are distinct \(\forall i \in \{1, 2, \ldots, n\} \)

WLOG, relabel so \(\frac{w_1}{t_1} > \frac{w_2}{t_2} > \ldots > \frac{w_n}{t_n} \)

Let \(\sigma \) be ordering using greedy, so \(\sigma = (1, 2, 3, \ldots, n) \)

For contradiction assume that the optimal ordering \(\sigma^* \) is not the greedy ordering.

Note: \(\exists k, j \text{ s.t. } \frac{w_j}{t_j} > \frac{w_k}{t_k} \text{, but } j \text{ is immediately after } k \text{ in } \sigma^* \text{ ordering.} \)

(Otherwise, \(\sigma^* = \sigma \))

Let's create a new ordering \(\sigma^*' \) that is same as \(\sigma^* \), but with \(k, j \) positions switched.

If \(\sigma^* \) has objective value \(A_{\sigma^*} \), and \(\sigma^*' \) has objective value \(A_{\sigma^*'} \), what is \(A_{\sigma^*} - A_{\sigma^*'} \)?
A scheduling problem is discussed with the time to complete the first set of jobs denoted as T. The expressions for A_{σ^*} and $A_{\sigma'^*}$ are given:

$$A_{\sigma^*} = \sum w_i C_i + w_k (T + t_k) + w_j (T + t_k + t_j) + \sum w_r c_r$$

$$A_{\sigma'^*} = \sum w_i C_i + w_j (T + t_j) + w_k (T + t_j + t_k) + \sum w_r c_r$$

The difference $A_{\sigma^*} - A_{\sigma'^*} = w_j t_k - w_k t_j$ is highlighted. It is shown that if $w_j > w_k$ and $t_j > t_k$, then $w_j t_k > w_k t_j$, leading to $A_{\sigma'^*} < A_{\sigma^*}$, which is a contradiction because σ^* is optimal.

Thus, our assumption that σ was not optimal was incorrect and σ is an optimal schedule.

The question at the bottom asks, "What is the runtime of the greedy scheduling algorithm?"

A) $O(1)$ B) $O(n)$ C) $O(n \log n)$ D) $O(n^2)$
Q: What is the runtime of the greedy scheduling alg.?
A) \(O(1)\) B) \(O(n)\) C) \(O(n\log n)\) D) \(O(n^2)\)