Quiz!

Scheduling Discussion

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Thu-Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS Due</td>
<td>Reflect</td>
<td>Respond</td>
<td>Reflect</td>
<td>Quiz on Canvas/in class</td>
</tr>
</tbody>
</table>

Learning Goals
- Describe closest points D&C strategy
- Apply greedy design strategy

Divide + Conquer Example:

Closest Pair Problem:

\[
\begin{align*}
&\text{Distance between 2 points:} \\
&d(P_i, P_j) = \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2}
\end{align*}
\]

Input: Array containing locations of n points (unique x,y coordinates)
Output: Closest pair of points

Applications:

Q. What is the runtime of an exhaustive search algorithm for closest pair on n points?

A) \(O(n^2)\) \(O(n)\) \(O(n^2)\) \(O(2^n)\)
Divide + Conquer Example:

Closest Pair Problem:

Distance between 2 points:
\[d(P_i, P_j) = \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2} \]

Input: Array containing locations of \(n \) points (unique \(x, y \) coordinates)
Output: Closest pair of points

Applications:
- Air traffic control
- Robotics
- Detecting repeated sequences of DNA
- Creating 3-D images out of stereo images (matching closest regions that are the same)
- Geography Info Systems: detect double boundaries

Q. What is the runtime of an exhaustive search algorithm for closest pair on \(n \) points?

A) \(O(n^2) \) \[O(n) \] \[O(n^2) \] \[O(2^n) \]

Need to check each pair. \(\binom{n}{2} = O(n^2) \) pairs. Calculating distance for each pair is \(O(1) \).
Q. Suppose the points are on a line:
\[x_1 \quad x_3 \quad x_2 \quad y=0 \]
P_2 \quad P_3 \quad P_1

• Design an \(O(n \log n) \) algorithm to find the closest distance
• If time, try to prove correctness
Q. Suppose the points are on a line: Given array:

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 \\
 y_1 & y_2 & y_3 \\
\end{bmatrix}
\]

- Write pseudo code for an \(O(n \log n) \) time algorithm
- If time, try to prove correctness

1. Sort \(\mathcal{O}(n \log n) \)

2. \(\text{MinDist} = \infty \)

 for \(i = 1 \) to \(n-1 \)

 if \((x_{i+1} - x_i) < \text{MinDist} \)

 \(\text{MinDist} = x_{i+1} - x_i \)

 \(\text{II} \)

 Loop over sorted points, check distance only between adjacent points. Return Min distance found.

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 \\
 y_1 & y_2 & y_3 & y_4 \\
\end{bmatrix}
\]

* Closest pair is adjacent... why?
* Naive still uses \(O(n^2) \), if try to check all pairs
What if sort along X axis, Y axis?

Circled points are closest, but when sort, get separated.

Algorithm Sketch
1. Sort points by X coordinate

2. Divide:
 Split X into left half + right half

 \[\begin{array}{c}
 & L & R \\
 & L & X & R \\
 & R & \rightarrow L \\
 & R & \rightarrow R \\
 \end{array} \]

3. Conquer: Find closest distance in each of L, R

Q: What size set of points should trigger base case of recursive algorithm?

A) 0 B) 1 C) 2 D) 3
What if sort along X axis, Y axis?

Circled points are closest, but when sort, get separated.

Algorithm Sketch

1. Sort points by X coordinate

2. Divide: Split X into left half + right half

3. Conquer: Find closest distance in each of L, R

Q: What size set of points should trigger base case of recursive algorithm?

A) 0 B) 1 C) ≤ 2 D) ≤ 3

Otherwise: 3 gets split into 2 and 1. Can't compare one point to itself.
4. Combine the midline.

If overall closest pair is on either side. But in trouble if closest pair crosses.

Let \(S \) be \(\min \{ CP(L), CP(R) \} \)

Claim*: Only need to look at a region within \(S \) of the midline.

Otherwise: Contradiction

distance greater than \(S \), so not the closest pair.
If squint, looks like points on a line!

1. Sort
2. For-loop to look at nearest neighbors