Goals
- Describe and analyze Closest Points Alg.
- Proof writing resources
- PS feedback
- S of midline

Algorithm Sketch for Closest Points

1. Base Case: 2 or 3 pts, do brute force
2. Recursive Step: Recurse on L, R halves, let S be smallest distance in either half

\[
D = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

\[
(x_i - x_j)^2 \geq S^2 \quad (y_i - y_j)^2 \geq 0
\]

so \(D \geq \sqrt{S^2} = S \)
If squint, looks like points on a line! For line:
1. Sort by y-coordinate
2. For-loop to look at nearest neighbors

3. Create sorted list of points within S of midline (Y_s). Loop through Y_s, checking distance between each point and next points. Let S' be smallest distance found in whole loop.

4. Return $\min\{S, S'\}$
Algorithm Sketch Summary for Closest Points

1. Base Case: 2 or 3 pts, do brute force

2. Recursive Step: Recurse on L, R halves, let S be smallest distance in either half

3. Create sorted list of points within \(S \) of midline \((Ys) \). Loop through \(Ys \), checking distance between each point and next — pts. Let \(S' \) be smallest distance found in whole loop.

4. Return \(\min \{ S, S' \} \)

Q:

A) Why only need to check next and not previous?

B) Next \(_ _ _ _ \) points...

(Hint... no two points in L or R are closer than \(S \))

C) Why did unique x,y coordinates make our lives easier?
Algorithm Sketch Summary

1. Base Case: 2 or 3 pts, do brute force
2. Recursive Step: Recurse on L, R halves, let S be smallest distance in either half
3. Create sorted list of points within S of midline (Ys). Loop through Ys, checking distance between each point and next — pts. Let S' be smallest distance found in whole loop.
4. Return min {S, S'}

Q:

A) Why only need to check next and not previous?

- Compare to next
- Don't need to compare to previous because already checked that distance

B) Next — points...

(Hint... no two points in L or R are closer than S

C) Why did unique x,y coordinates our lives easier?

Every point in L or R. Otherwise could have a cluster all on midline
Let
\(Y_5 \) be array of points, within \(S \) of midline line, sorted by \(y \)-coordinate
\(p_i \) be \(i \)-th element of \(Y_5 \)

Claim: If \(d(p_i, p_j) < S \), then \(|i - j| \leq 7 \)

Proof: Imagine dividing into squares of \(\frac{\frac{S}{2}}{2} \times \frac{\frac{S}{2}}{2} \), starting at \(p_i \)

\[
\begin{array}{c}
\{ & \\
& \\
& \leftarrow \text{boxes where } p_j \text{ might be} \\
& \left\{ 8 \text{ possible} \right\} \\
& \leftarrow \text{Too far away} \\
\end{array}
\]

\(S \)
\(S \)

NOTE: there is \(\leq 1 \) pt in each square

For contradiction, suppose 2 pts in square:

Largest distance at corners
Distance: \(\frac{\sqrt{2}S}{2} \)

Each square in L or R, so points must have distance at least \(S \) by inductive assumption.
Contradiction!

8 squares possible \(\rightarrow \) 8 pts possible \(\rightarrow \) check next 7 pts

(Can do better analysis, but more work for little improvement)
Time analysis:

For each step, what is big-O run time?

Let $T(n)$ = runtime on n points, $|P|=n$

ClosestPair (P)

1. If $|P| \leq 3$, brute force

2. Sort by x-coordinate into L, R

3. $S = \min \{ \text{ClosestPair}(L), \text{ClosestPair}(R) \}$

4. Create Y_S, an array of pts within S of midline, sorted by y-coordinate

5. Loop through Y_S, calculate distance from each pt to next 7 pts, keep track of smallest distance S'

6. return $\min \{ S', S \}$
Time analysis:

Q: For each step, what is big-O run time?

ClosestPair (p)
1. If |P| ≤ 3, brute force \(O(1) \)

2. Sort by x-coordinate into L, R \(O(n \log n) \)

3. \(S = \min \{ \text{ClosestPair} (L), \text{ClosestPair} (R) \} \) \(2T\left(\frac{n}{2}\right) \)

4. Create \(Y_s \), an array of pts within \(S \) of midline, sorted by y-coordinate \(O(n \log n) \)

5. Loop through \(Y_s \), calculate distance from each pt to next 7 pts, keep track of smallest distance \(S' \) \(O(n) \)

6. return \(\min \{ S', S \} \) \(O(1) \)

\[T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) \]
Now what is runtime of each step

Preprocess: Sort P into X,Y arrays of all points sorted by x,y-coordinate

$\text{ClosestPair}(X,Y)$

1. If $|P| \leq 3$, brute force

2. Create X_L,Y_L,X_R,Y_R for left/right halves

3. $S = \min \{ \text{ClosestPair}(X_L,Y_L), \text{ClosestPair}(X_R,Y_R) \}$

4. Create Y_S, an array of pts within S of midline, sorted by y-coordinate

5. Loop through Y_S, calculate distance from each pt to next 7 pts, keep track of smallest distance S'

6. return $\min \{ S', S \}$
Better Runtime:

0. Preprocess: Sort P into \(X, Y\) arrays of all points sorted by \(x, y\)-coordinate \(O(n \log n)\)

\[\text{ClosestPair}(X, Y)\]

1. If \(|P| \leq 3\), brute force \(O(1)\) \(O(n)\)

2. Create \(X_L, Y_L\) \(X_R, Y_R\) for left/right halves

3. \(S = \min \{\text{ClosestPair}(X_L, Y_L), \text{ClosestPair}(X_R, Y_R)\}\) \(2T(n/2)\)

4. Create \(Y_S\), an array of pts within \(S\) of midline, sorted by \(y\)-coordinate \(O(n)\)

5. Loop through \(Y_S\), calculate distance from each pt to next 7 pts, keep track of smallest distance \(S'\) \(O(n)\)

6. Return \(\min \{S', S\}\) \(O(1)\)

\[T(n) = 2T(n/2) + O(n)\] (preprocess \(O(n \log n)\)
Step 2:

Look to determine midline.

Left of midline → Y_L
Right of midline → Y_R

Keep in order.

Step 4

Loop

Within S of midline?

Keep in order.