Dijkstra Heap

\[X[v] = 0; \ A[v] = \infty; \ B[v] = \emptyset; \quad \forall \ v \in V \]

\[v.\text{key} = \infty \quad \text{for all } v \in V \]

\[v.\text{parent} = \emptyset \quad \text{for all } v \in V \]

\[s.\text{key} = 0. \]

Heapify all \(v \in V \) \(\{ O(n \log n) \} \)

\[\text{while (Heap is not empty)} \]

- Let \(w \) = vertex with min key

- Remove \(w \); \(X[w] = 1; \ A[w] = w.\text{key}; \) \(\{ O(\log n) \} \)

- \(B[w] = B[w.\text{parent}] + (w.\text{parent}, w) \)

- for \(u \in \text{Adj}[w] \) \& \(u \) not explored

 - Check if need to update \(u.\text{key} \)

 - If yes, remove & reinsert

How many times does this loop run?

\[O(m) \rightarrow \]

\[(\text{see next page}) \]

How many times does this check happen over whole algorithm?

\[O(\log n) \]

What is cost?

\[O(\log n) \]
Only need to update if

Only gets updated when w or v gets pulled into X. Only happens once for each edge.

Adding it all up:

\[O(n) + O(n \log n) + O(n \log n) + O(m \log n) \]

\[\Rightarrow O((n+m) \log n) \]

Much better than FOR loop approach which was \(O(nm) \)