Algorithm

Preprocessing step:
Create \(X \) = points sorted by \(x \)-coordinate arrays
Create \(Y \) = points sorted by \(y \)-coordinate

\[O(n \log n) \]

Closest-Pair \((X, Y)\)

- If \((|X| \leq 3)\) \{ check all possible pairs \& return min distance \}\(\{ O(1) \)

- Create \(X_L, Y_L \) = sorted left half by \(x, y \) \(\{ O(n) \)
- Create \(X_R, Y_R \) = " right "

- \(S = \min \{ \text{Closest-Pair}(X_R, Y_R), \text{Closest-Pair}(X_L, Y_L) \} \leq 2 \cdot T(\frac{n}{2}) \)

- \(Y_s \) = points within \(S \) of line sorted by \(y \) \(\{ O(n) \)

- for \((i = 1 \to \text{length} (Y_s) - 7)\) \{
 - for \((j = 1 \to 7)\) \{
 - if \((d(P_i, P_i+j) < S)\) \{
 - \(S = d(P_i, P_i+j) \)
 \}
 \}
- \}

\(\approx 11n = O(n) \)

\(\}

Return \(S \)

(only returns shortest distance, but can easily modify to return closest points)

Loop over points in \(Y_s \), and check distance between current \& next 7 pts. Track smallest distance
Recurrence Relation:

\[T(n) = \max \text{ # of operations required on instance with } n \text{ points} \]

Base: \(T(3), T(2) \) is constant

Recurrence: \(n \geq 3 \)

A) \(T(n) \leq 2T\left(\frac{n}{2}\right) + O(n) \)

B) \(T(n) \leq 2T\left(\frac{n}{2}\right) + O(n^2) \)

C) \(T(n) \leq \frac{1}{2} T(2n) + O(n) \)

D) \(T(n) \leq \frac{1}{2} T(2n) + O(n^2) \)

\[Y \rightarrow Y_L, Y_R \]

\[Y_L, Y_R \]

Stay in sorted order. Takes Time \(O(n) \)

With group, go over algorithm analysis; take turns explaining.