Dijkstra

Good: very fast! O(m log n) run time

Bad: not good if have distributed graph like internet
 - Not good if have negative weights

E.g. financial transaction graph:

- Buy ➔ Sell ➔ Buy ➔ Sell

New Approach: Dynamic Programming - Bellman Ford

(Actually used for internet routing!)

Problem: What to do when G has negative weight cycle?

def: Cycle is a path from v ∈ V back to v ∈ V, and doesn't repeat other vertices

A) Return -∞
B) Should return shortest cycle free path

⇒ NP-complete problem. Best known algorithm is exponential in nm

Bellman Ford:

Input: directed graph $G = (V, E)$, edge costs c_e, vertex $s ∈ V$

Output: Negative cycle in G
 or (if no negative cycle)
 Shortest paths from s to all other $v ∈ V$

For now, assume no neg. wt. cycle in G (but neg. wt. edges OK!)
Q: If a graph G has no negative weight cycles, what is an upper bound on the number of edges in a shortest path?

A) no bound B) m C) n D) $n-1$

Proof: For contradiction, suppose a path has $>n-1$ edges.

- Then must visit same vertex twice \Rightarrow cycle
- All cycles have non-negative weight, so if remove, get shorter path, a contradiction!
To Create D. P. (dynamic programming) algorithm:

1. Think of form of optimal solution.
 - WMIS on line: \(v_n \in S \) or \(n \notin S \)

2. How do you write in terms of optimal solution to smaller problems?
 - (i)
 - (ii)

Problem: on general graphs, hard to order subproblems

Q: What is shortest path from 5 to 4 with at most 2 edges? at most 3 edges?

A) 3, 1
B) 2, 0
C) 3, -1
D) 2, 1

We'll use max # of edges in path to order our subproblems
Let \(P_{i, v} = \) shortest \(s-v \) path with at most \(i \) edges
(\(\infty \) if no \(s-v \) path) \hspace{1cm} (\text{assume unique} \ A \ v, i)

Case 1: If \(P_{i, v} \) has \(\leq (i-1) \) edges,
\[
P_{i, v} = P_{i-1, v}
\]

Case 2: If \(P_{i, v} \) has \(i \) edges, then
\[
P_{i, v} = P_{i-1, w} + (w, v)
\]
for some \(w: (w, v) \in E \)

Proof:

Case 1: \(\ell(P_{i, v}) \leq \ell(P_{i-1, v}) \) since extra edge can only help.

- If \(\ell(P_{i, v}) < \ell(P_{i-1, v}) \), then there is a shorter path than \(P_{i-1, v} \) with \(\leq (i-1) \) edges, a contradiction.

\[
\Rightarrow \ell(P_{i, v}) = \ell(P_{i-1, v})
\]
by uniqueness, \(P_{i, v} = P_{i-1, v} \)

Case 2: Suppose \(P_{i, v} = P + (w, v) \) where \(p \) is a path from \(s \) to \(w \), \(p \not\supset P_{i-1, v} \)

- \(p \) longer \(\Rightarrow P_{i, v} \) is not optimal.
- \(p \) can't be less than \(P_{i-1, v} \) by def

\[
\Rightarrow P_{i, v} = P_{i-1, w} + (w, v) \text{ for some } w.
\]
Q: How many subproblems must be evaluated to calculate $P_{i,v}$?
A) $n+1$ B) n C) $1 + \left| \{ u : (u,v) \in E \} \right| + D \left| \{ u : (u,v) \in E \} \right|

Case 1: $1 \rightarrow P_{i-1,v}$
Case 2: $P_{i-1,w}$, for each $w \in \{ u : (u,v) \in E \}$

\mathcal{O} Cycles permitted b/c i keeps from infinite cycling around

3 (Dynamic Programming) Create recurrence relation

Let $L_{i,v}$ be length of path $P_{i,v}$ (∞ if \emptyset path)

Q: Base Case: $L_{0,s} = 0$ $L_{0,v} = \infty$ $\forall v \in V - s$

Recurrence: $L_{i,v} = \min \left\{ L_{i-1,v} \right\}$

$\min_{(w,v) \in E} \left(L_{i-1,w} + c_{(w,v)} \right)$

Correctness: Using proof on previous page, $P_{i,v}$ must be related to one of $1 + \left| \{ u : (u,v) \in E \} \right|$ subproblems. We look at all (exhaustive search)