1. Prove that the algorithm laid out in pseudocode in algorithm 1 is correct.

Input: Two integers a and b, given as arrays of length n, where
\[a = [a_{n-1}, \ldots, a_1, a_0], \quad b = [b_{n-1}, \ldots, b_1, b_0]. \]

Output: $a \times b = \left(\sum_{i=0}^{n-1} a_i 10^i \right) \left(\sum_{j=0}^{n-1} b_j 10^j \right)$ as an integer

1 if $n == 1$ then
 2 return $a \times b$; // Base case when both numbers are 1-digit numbers
else
 // Divide input into halves, and pad with zeros if necessary:
 4 $h = \lfloor n/2 \rfloor$;
 5 $a^1 = [a_{n-1}, \ldots, a_h]$;
 6 $b^1 = [b_{n-1}, \ldots, b_h]$;
 7 if $n - h \neq h$ then
 8 $a^0 = [0, a_{h-1}, \ldots, a_0]$;
 9 $b^0 = [0, b_{h-1}, \ldots, b_0]$;
 else
 11 $a^0 = [a_{h-1}, \ldots, a_0]$;
 12 $b^0 = [b_{h-1}, \ldots, b_0]$;
 end
 // Conquer!
 14 return $10^h \times \text{RecMultiplication}(a^1, b^1, n - h) + \text{RecMultiplication}(a^0, b^0, n - h)$;
end

Algorithm 1: \text{RecMultiplication}(a, b, n)

Solution

We will prove using strong induction on n, the length of a and b, that \text{RecMultiplication} correctly outputs the product of a and b.

For the base case, if $n = 0$, the algorithm does nothing, which is correct, since a and b have length 0.

Now for the inductive step. For strong induction, we assume the algorithm outputs the correct result when the length of the input is k, for all k such that $n > k \geq 0$. We
will prove the algorithm outputs the correct value on inputs of size n. Since $n \geq 0$, the algorithm enters the recursive case. Note that each of the recursive calls in line 14 involves a multiplication of two numbers with $n-h$ digits (thanks to our padding with zeros step), where $h = \lfloor n/2 \rfloor \geq 1$.

Therefore, the algorithm returns

$$\begin{align*}
n & = 10^{2h} \left(\sum_{i=0}^{n-h-1} a_i 10^i \right) \left(\sum_{j=0}^{n-h-1} b_j 10^j \right) + \left(\sum_{i=0}^{n-h-1} a_i 10^i \right) \left(\sum_{j=0}^{n-h-1} b_j 10^j \right) \\
& \quad + 10^h \left(\sum_{i=0}^{n-h-1} a_i 10^i \right) \left(\sum_{j=0}^{n-h-1} b_j 10^j \right) + 10^h \left(\sum_{i=0}^{n-h-1} a_i 10^i \right) \left(\sum_{j=0}^{n-h-1} b_j 10^j \right) \\
& = (10^h \sum_{i=0}^{n-h-1} a_i 10^i + \sum_{i=0}^{n-h-1} a_i 10^i) \left(10^h \sum_{j=0}^{n-h-1} b_j 10^j + \sum_{j=0}^{n-h-1} b_j 10^j\right) \\
& = a \times b.
\end{align*}$$

Thus, by strong induction, the algorithm is correct.