Goals:
- Implement Deduction Strategies
- Create sets using set builder notation

Deductions: Known true statements → new true statements

\[P \rightarrow Q \]

Premises:
\[P \]
\[Q = T \]
\[= T \]

\[\therefore \text{You passed a swim test.} \]

Conclusion:
\[\therefore \text{You passed a swim test.} \]

2 Strategies

1. Truth table. Cross out false rows, see what is left

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P → Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
2. Reason it out.

If P is true and P \rightarrow Q is true then Q must be true because otherwise T \rightarrow F = F.

Q:

Andre has a black suit and a tweed suit. He always wears his tweed suit OR he wears sandals. If he wears his tweed suit and purple shirt, he does not wear a bow tie. He never wears his tweed suit unless he also wears a purple shirt OR sandals. If he wears sandals, he also wears a purple shirt. Yesterday, Andre wore a bow tie. What else did he wear?

OR = logical or

W = tweed suit
P = purple shirt
S = sandals
B = bow tie
\[W = \text{tweed Suit} \]
\[P = \text{purple shirt} \]
\[S = \text{sandals} \]
\[B = \text{bow tie} \]

\[W \land P = F \]

\[W \lor S \]
\[W \land P \rightarrow \neg B \]
\[W \rightarrow (P \lor S) \]
\[S \rightarrow P \]
\[B \]

\[\neg W \]
\[+W \lor S \]
\[S = T \]
\[+S \rightarrow P \]
\[P = T \]

\[P = F \]
\[+S \rightarrow P \]
\[S = F \]
\[+W \lor S \]
\[W = T \]
\[W \rightarrow (P \lor S) = F \]

[Cross mark]
W → S
W → A → ¬B
W → (P ∨ S)
S → P
B

WAP is false

Solution

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
<th>S</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Sets

Set is a group of unordered objects (no repeats, order doesn’t matter)

Metaphor: Folder on computer

- Contains files + other folders
- Could be empty
Roster Notation: \(A = \{0, 2, 5\} \) means "\(A \) is the set containing the elements 0, 2, 5."

for sets "element" = "object"

\(\in \): \(2 \in A \) means 2 is an element of A

\(\notin \): Prof. Watson \(\notin S \) means Prof. Watson is not an element of S.

Sets in Sets: \(T = \{x, y, \{g, h\}, k\} \)

an element of a set can be another set

Q: Is \(g \in T \)? Is \(\{g, h\} \in T \)?

elements of \(T \) are \(x, y, \{g, h\}, k \)

Also \(\{x, y\} \notin T \)
Famous Sets

\[\emptyset = \text{empty set} = \{ \} \]
\[\mathbb{N} = \text{set of natural numbers} = \{ 1, 2, 3, \ldots \} \]
\[\mathbb{Z} = \text{set of integers} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} \]
\[\mathbb{R} = \text{set of real numbers} \]
\[\mathbb{Q} = \text{set of rational numbers (fractions) } \]

NOTE: In some books, \(\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \) starts at 0.

Set Builder Notation

\[\{ f(x) : P(x) \} = \text{the set of } x \text{ where } P(x) \text{ is true, with } f(x) \text{ applied to } \]
\[\text{function of } x \]
\[\text{predicate of each element} \]

Ex: \[A = \{ x^2 : x \text{ is even} \} = \{ 0^2, 2^2, 4^2, 6^2, \ldots \} \]
\[= \{ 0, 4, 16, 36, \ldots \} \]

\[A = \{ (2x)^2 : x \in \mathbb{Z} \} = \{ (2 \cdot 0)^2, (2 \cdot 1)^2, (2 \cdot 2)^2, \ldots \} \]
\[= \{ 0, 4, 16, \ldots \} \]

\[A = \{ x : x \in \mathbb{N} \land \frac{1}{x} \in \mathbb{Z} \} \]