Announcements

- Test: today → Wed @ 6 pm
- Where was Prof K.
- Kappa
- Reflections (No style of proof given)
- Quiz

<table>
<thead>
<tr>
<th>Chris</th>
<th>Joonwoo</th>
<th>Galen</th>
<th>Grant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>Laura</td>
<td>Christan</td>
<td>Kai</td>
</tr>
<tr>
<td>Anna</td>
<td>Alex F</td>
<td>Pierce</td>
<td>Ursula</td>
</tr>
<tr>
<td>Brooks</td>
<td>Eric</td>
<td>Alex B</td>
<td>Jackson</td>
</tr>
<tr>
<td>Ben</td>
<td>John</td>
<td>Gabby</td>
<td>Corinne</td>
</tr>
<tr>
<td>Noah</td>
<td>Graham</td>
<td>Hamilton</td>
<td>William</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chris</th>
<th>Jacob</th>
<th>Lucy</th>
<th>Miles</th>
<th>Annica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emma</td>
<td>Hannah</td>
<td>Kieran</td>
<td>Matt</td>
<td>Peter</td>
</tr>
<tr>
<td>Sam</td>
<td>Asra</td>
<td>Lilly</td>
<td>Arden</td>
<td>Laura</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nicole</th>
<th>Angel</th>
<th>Andrew</th>
<th>Asher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elva</td>
<td>Nadani</td>
<td>Abigail</td>
<td>Elie</td>
</tr>
<tr>
<td>Elita</td>
<td>Farhan</td>
<td>Jacqueline</td>
<td>Trey</td>
</tr>
</tbody>
</table>
Strong Induction - when to use

Quiz:
- Whenever use inductive assumption, need to explain why you are lower on ladder.
 - If assume \(P(r) \) is true \(\forall r \in \mathbb{Z}, 2 \leq r \leq k \), need to show instance is between 2 & k.
- Readability "Using the inductive assumption"

Counting Tricks (worksheet was challenge)
- "or" \(\rightarrow \) sum rule
- "and" \(\rightarrow \) product rule
- Make this choice then make this choice \(\rightarrow \) product rule
 - \(\uparrow \) order matters

\[\binom{6}{2} \times \binom{4}{2} \] incorrect

\[\binom{2}{1} \times \binom{2}{1} \] if
because saying the order in which you pick pairs matters
• If order matters, use permutation

• Check for overcounting: can you get the same result 2 ways

• "At least 3" = 3 or 4 or 5 = sum rule

• K positions in string of length n: \(\binom{n}{k} \)

\[
\begin{array}{c}
\text{DDDDD same DDDD} \\
\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \\
\text{1st} \quad 2nd \quad 3rd \quad 4th \quad 5th
\end{array}
\]

• Best... Practice!

• Do small examples

• Several ways to solve!
Big-O questions

Not intersection:

\[
\sin(x) \leq 1 \text{ for all } x \geq 0 \\
\sin(x) = O(1)
\]

(Change of base formula OK)

Graph search \(\rightarrow\) PA

Contradiction/Induction questions

Want to prove: \(P \rightarrow Q\)

Assume for contradiction: \(P \land \neg Q\) 7.5.3