Think about what was last choice you made, and what options/choices you had.

- **Stairs**
 - Final choice: 1 step or 2 steps to get to final

$$T(n-2) \rightarrow \text{choice}^2 \xrightarrow{\text{Choice 1}} T(n-1)$$

- Use recursive expression to figure out prior # of options
- Use sum rule to combine.
 $$T(n-2) + T(n-1)$$
- Base case (2 cases here!)

- **Strings**
 - Last digit is 0, 1, ..., 9

\[n \]
Master Method way to solve recurrence

Input: Array A of length n
Output: Max value in array

If A.length = 1, return A[1]
for i = 1 to n, do nothing

max 1 = max (1st half of A)
max 2 = max (2nd half of A)
return maximum [max1, max2]

Time complexity:

T(1) = O(1)
T(n) = 2T(n/2) + O(n)

Level of
Recursion

1
2
3
4
5

In box: amount
of work done at
this call not including
work done by recursive calls

O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)
O(n)

Size of input

n
n/2
n/4

Idea: count all work done in all boxes... that will be all the work.
Master Method

Way to solve certain recurrences

\[
T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)
\]

If \(T(n) \leq C \) for \(n < n^* \)

\(a, b, d \) don't depend on \(n \)

Q: If \(T(n) \) is runtime of an algorithm,

What are \(a, b, d \) in words?

A:
- \(a \): \# of recursive calls
- \(b \): factor by which problem shrinks in recursive call
- \(d \): characterizes extra work outside recursive call

Let's Add Up All Work

\(n \leftarrow \text{Problem size} \)

\(\frac{n}{s} \leftarrow \text{Input size} \)

\(\frac{n}{25} \leftarrow \)...

ex:
- \(a = 3 \)
- \(b = 5 \)
- \(d = 4 \)
Proof of Master Method

0. What is F (in terms of a, b, d)?

A) $O(\log_b n)$ B) $O(\log d n)$ C) $O(n^{\log_b d})$ D) $O(b^{\log_d n})$

Because at each level, problem size is divided by b. $\log_b n$ is number of times n can be divided by b before reaching a constant.

$$\underbrace{\text{constant} \cdot b \cdot b \cdots b} = n$$

$$F = \frac{F}{\log_b n} \cdot \frac{F}{\log_b n} \cdot \cdots \cdot \frac{F}{\log_b n} = 1$$

Take \log_b of both sides:

$$F = \log_b n + \text{constant}$$
Q. What is the total work done at level K (outside of recursive calls & in terms of a, b, c)?

- a^K subproblems at level K.
- Level K subproblem size: \(\frac{n}{b^K} \)
- Work outside of recursive call required to solve 1 subproblem

\[\Rightarrow \text{Total work} \quad a^K \left(\frac{n}{b^K} \right)^d = \left(\frac{a}{b^k} \right)^K n^d \]

Now we add up work done at all levels:

\[\sum_{k=0}^{\log_b n} \left(\frac{a}{b^d} \right)^K n^d \]

\[T(n) = n^d \left[\sum_{k=0}^{\log_b n} \left(\frac{a}{b^d} \right)^K \right] \]

Multiplicative Distributive Property
Geometric Series:

\[
\sum_{k=0}^{F} r^k = \begin{cases}
F+1 & \text{if } r = 1 \\
\frac{1-r^{F+1}}{1-r} & \text{otherwise}
\end{cases}
\]
2 cases:

- \(\frac{a}{b^d} = 1 \) \quad \rightarrow \quad n^d \sum_{k=0}^{\log_b n} \left(\frac{a}{b^d} \right)^k = O \left(n^d \log_b n \right)

- \(\frac{a}{b^d} \neq 1 \) \quad \rightarrow \quad n^d \sum_{k=0}^{\log_b n} \left(\frac{a}{b^d} \right)^k = n^d \frac{1 - \left(\frac{a}{b^d} \right)^{\log_b n}}{1 - \frac{a}{b^d}}

\uparrow \text{constant} = C

Look at:

2 cases

- \(\left(\frac{a}{b^d} \right) < 1 \) \quad \rightarrow \quad 1 - \left(\frac{a}{b^d} \right)^{\log_b n} = O(1)

- \(\left(\frac{a}{b^d} \right) > 1 \) \quad \rightarrow \quad \frac{1 - \left(\frac{a}{b^d} \right)^{\log_b n}}{1 - \frac{a}{b^d}} = O \left(\left(\frac{a}{b^d} \right)^{\log_b n} \right)
\[
\left(\frac{a}{b} \right)^{\log_b n} = \frac{a^{\log_b n}}{b^{\log_b n}} = \frac{a^{\log_b n}}{n^{\log_b b}} = \frac{a^{\log_b n}}{n^d} = \frac{n^{\log_b a}}{n^d} = O\left(n^{\log_b a}\right)
\]

\[
T(n) = aT\left(\frac{n}{b}\right) + O\left(n^d\right)
\]

\[
T(n) = \begin{cases}
O(n^d \log n) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O\left(n^{\log_b a}\right) & \text{if } a > b^d
\end{cases}
\]

Q: Interpret

- Balance between current work + recursive work.
- Run-time dominated by work outside recursive calls.
- Runtime dominated by work in bottom level of tree.