Deductions: using known true statements to create new true statements

If you graduate, you must pass a swimming test.

Premises:
1. If you graduate, you must pass a swimming test.
2. You graduated

\[\begin{array}{c}
\text{Premises} \\
\{ \\
\text{If you graduate, you must pass a swimming test.} \\
\text{You graduated} \\
\} \\
\end{array} \]

\[\begin{array}{c}
\text{Conclusion} \\
\{ \\
\text{You passed a swim test.} \\
\} \\
\end{array} \]

\[P \rightarrow Q \]

\[\begin{array}{c}
P \\
\hline
T \\
F \\
T \\
F \\
F \\
T \\
T \\
T \\
\end{array} \]

\[\begin{array}{c}
P \\
\hline
T \\
T \\
F \\
F \\
T \\
T \\
T \\
T \\
\end{array} \]

If \(P \rightarrow Q \) is true and \(P \) is true, then \(Q \) must be true.

If premises are true, conclusion is true. If premises are false, conclusions don't hold.

This is like inductive Proof!

\[P(K) \text{ is true } \rightarrow P(K+1) \text{ is true} \]
VS
W \land P \rightarrow \neg T
T \rightarrow PVS
S \rightarrow P
T

\ldots
W = ?
P = ?
S = ?

\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c}
W & P & S & T \\
\hline
T & T & T & F \\
T & T & F & T \\
T & F & T & F \\
T & F & F & T \\
F & T & T & T \\
F & F & T & F \\
F & F & F & F \\
\end{tabular}

In Words:

Because T and T \rightarrow PVS, must have PVS.
If \neg S, then must have.

P. But must have W because W VS is true.
But now W \land P, so we must have \neg T. But T is true, so we must have gone wrong. Only choice was \neg S, so instead, try S. Then since S \rightarrow P, we have P. Now we can't have W, otherwise \neg T. Thus S, P, \neg T. Tw, Black.