1. [11 points] Prove Algorithm 1 for binary search is correct using strong induction on \(n \), where \(n = f - s \). You should also use proof by cases for the if-elses. **Note:** This is a complex proof, and you will probably not get all of the parts correct. Just try your best :) Recall, if \(A \) is sorted in increasing order and no integers are repeated, that means \(i < j \) if and only if \(A[i] < A[j] \).

 Input : (1) Array \(A \) containing integers, where there are no repeated integers and the integers are sorted from smallest to largest, (2) an element \(V \) in \(A \), and (3) two indeces \(s \) and \(f \), where \(s \leq f \) and the index of \(V \) is between \(s \) and \(f \) (inclusive)

 Output: Index \(j \) such that \(A[j] = V \), and \(s \leq j \leq f \).

   ```
   // Base Case
   1 if f - s = 0 then
   2     return s;
   3 end
   // Recursive step
   4 mid = \lfloor (f + s) / 2 \rfloor;
   // \lfloor \cdot \rfloor means round down to the nearest integer
   5 if A[mid] = V then
   6     return mid;
   7 else
   8     if A[mid] < V then
   9         return BinarySearch(A, V, mid + 1, f);
  10     else
  11         return BinarySearch(A, V, s, mid - 1);
  12 end
  13 end

   Algorithm 1: BinarySearch(A, V, s, f)
   ```

2. **Party-trick Proof** [11 points] Suppose you are at a party with 19 acquaintances (so there are 20 people at the party). Prove (using a proof by contradiction) that there must be at least two people at the party who talked to the same number of people over the course of the evening. (Note: we assume that if Alice talked to Bob, that also means that Bob talked to Alice.)