Please read the sections of the syllabus on problem sets and honor code before starting this homework.

1. *Don’t forget induction!* [11 points]

 Prove that Algorithm 1 correctly searches an array of integers for a specific integer. Hint: let \(P(n) \) be the predicate: \texttt{Search} works correctly on an input array of size \(n \). Hint: take a look at the previous week’s solution to remind your self about the general strategy for algorithms.

 Algorithm 1: Search\((s, A)\)

 Input: Integer \(s \), and an array of integers \(A \)

 Output: Returns \(i \) such that \(A[i] = s \), or \(-1\), if \(s \) is not in the array. (The first element of \(A \) is at position 1.)

 1. \(n = \text{length of } A; \)
 2. /* Base Case */
 3. if \(n == 1 \) then
 4. if \(A[1] == s \) then
 5. return \(n \);
 6. else
 7. return \(-1\);
 8. end
 9. /* Recursive case: */
10. else
11. if \(A[n] == s \) then
12. return \(n \);
13. else
14. return \texttt{Search}\((s, A[1:n-1]);\)
15. end

2. *Set Builder to Roster Notation* [2 point each]

 The following sets are described in set builder notation. Describe each of them in roster notation, instead. The following symbols are used: \(\mathbb{Z} \) denotes the set of integers; \(\mathbb{R} \) denotes the set of real numbers; \(\mathbb{N} \) denotes the set of natural numbers, i.e., \(\mathbb{N} = \{1, 2, \ldots \} \).

 (a) \(\{r : r \in \mathbb{R} \text{ and } r = r^2\} \)
 (b) \(\{n : n \in \mathbb{N} \text{ and } n > n^2\} \)
(c) \(\{ x : x \text{ is a letter in the word } \text{accommodate} \} \)
(d) \(\{ z^2 : z \in \mathbb{Z} \text{ and } 6 < z^3 < 160 \} \).
(e) \(\{ S \subseteq \{2, 4, 6, 8\} : S \cap \{2, 4\} \neq \emptyset \text{ and } |S| \text{ is even} \} \)

3. \textit{Set builder notation} [3 points each] Write each of the following sets using set-builder notation:

(a) \(A = \{\ldots, 1/8, 1/6, 1/4, 1/2, 2, 4, 6, 8 \ldots \} \)
(b) \(B = \{1, 2, 4, 8, 16, 32, \ldots \} \)
(c) \(A \cap B \)
(d) Express the set of all sets of 2 integers such that the two numbers in the set are non-zero, have opposite signs, and the magnitude of one of them is the square of the magnitude of the other.

4. \textit{Universal Set} [2 points] Let \(U \), the universal set, be the set of even integers from 2 to 12 inclusive, and let \(A = \{4, 6, 7, 9\} \), \(B = \{2, 3, 4, 5, 7\} \). What is \(\overline{A \cap B} \)?

5. \textit{Set Operations} [2 points each] Simplify each of the following expressions, where \(A \) is an arbitrary set, \(\emptyset \) is the empty set, and \(U \) is the universal set. Hint: each answer to (a)-(h) is one of \(A, U, \) or \(\emptyset \). Just write down the answer: no proof needed, no steps need be shown.

(a) \(A \cap U \)
(b) \(A \cap \emptyset \)
(c) \(A \cup U \)
(d) \(A \cup \emptyset \)
(e) \(A \cup A \)
(f) \(A \cap A \)
(g) \(A \cup \overline{A} \)
(h) \(A \cap \overline{A} \)

6. \textit{Statements} [3 points each] For each of the following sentences, decide whether it is a statement, predicate, or neither, and explain why

(a) Call me Ishmael.
(b) The universe is supported on the back of a giant tortoise.
(c) \(x \) is a multiple of 7.
(d) The next sentence is true.
(e) The preceding sentence is false.
(f) The set \(\mathbb{Z} \) contains an infinite number of elements.
7. **Statements** [2 point each]

This problem has been postponed until next week’s problem set!! If you’ve already done it, that is OK - but please include your solution for next week, too.

Simplify each of the following expressions, where p denotes a statement, and T and F are the Boolean constants *true* and *false*. Hint: each answer is one of p, T, or F. No proof needed, no steps need be shown.

(a) $T \land p$
(b) $F \land p$
(c) $T \lor p$
(d) $F \lor p$
(e) $p \lor p$
(f) $p \land p$
(g) $p \lor \neg p$

8. How long did you spend on this homework?