Graphs

\[G = (V, E) \]

Use parentheses to denote ordered set

- \(V = \text{set of vertices} \)
 - ex: \(V = \{a_1, b_1, c_1, d_1, e_1\} \)

- \(E = \text{set of edges} \)
 - \(E \subseteq V \times V \)
 - ex: \(E = \{\{a_1, b_1\}, \{a_1, c_1\}, \{a_1, d_1\}, \{b_1, c_1\}, \{d_1, e_1\}, \{b_1, e_1\}, \{c_1, e_1\}\} \)

Each edge is a set consisting of 2 vertex elements.

Draw this Graph:

- \(\text{a} \)
- \(\text{b} \)
- \(\text{c} \)
- \(\text{d} \)
- \(\text{e} \)
Graphs:

```
Raccoon       Hawk       Owl
    Anne      Bob        Lard
Squirrel     Crow
Dave
Eve
```

- "Niche overlap graph"
 - Connection if share a food source
 - Connection if friends on Facebook

Natural questions:
- Which vertex has the largest degree (# of neighbors)? *Most omnivorous*
- Are two nodes connected? *Linked in*
- What is the shortest path from one node to another?
- What are the fewest edges one would need to remove to separate two nodes? *Cyber attack
 railway attack*

The question that started it all:

Is there a path through the graph (starting anywhere) that takes you on each edge once?

Königsberg Bridge Problem:

Euler solved for any graph
Directed Graph
\[G = (V, E) \]

- \(V \) = set of vertices
- \(E \) = set of edges

An edge \(e = (a, b) \) is an ordered pair of vertices.

\[a \quad \rightarrow \quad b \]
Q. What types of websites are on the left of the bow?

- Personal websites (left)
- Company websites (right)
- Gov't websites (right)
- Facebook

If time: discuss goals, solve generalized bridge problem