Sets

- objects
- group of unordered elements
- no repeats

Metaphor: Folder on computer
- Contains files + folders
- Could be empty
- Can't contain same object twice

\[\text{set} \]
\[\text{a set can contain other sets as elements} \]
Roster Notation: \(A = \{0, 2, 5\} \) means "\(A \) is the set containing the elements \(0, 2, 5 \)."

Since order doesn't matter: \(A = \{2, 0, 5\} \) \(\iff \) same set \(A = \{5, 2, 0\} \)

\(\in \): \(2 \in A \) is a statement. True if \(2 \) is an element of \(A \).

\(\notin \): "\(\text{dog} \) \(\notin A \) \iff \neg \text{"dog"} \in A \). True if "\(\text{dog} \)" is not an element of \(A \).

Sets in Sets

\[T = \{x, y, \{g, h\}, k\} \]

an element of a set can be another set

Q: Is \(g \in T? \) Is \(\{g, h\} \in T? \)

\(\{g, h\} \) \(\in \) \(T \):

\(\text{elements of } T \text{ are } x, y, \{g, h\}, k \)

\(\{x, y\} \notin T \)

*Also \(\{x, y\} \notin T \)
Famous Sets

\(\emptyset \) = empty set = \{ \}\n\(\mathbb{N} \) = set of natural numbers = \{1, 2, 3, \ldots \}
\(\mathbb{Z} \) = set of integers = \{\ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}
\(\mathbb{R} \) = set of real numbers
\(\mathbb{Q} \) = set of rational numbers (fractions)

NOTE: In some books, \(\mathbb{N} = \{0, 1, 2, 3, \ldots \} \)
starts at 0.

Set Builder Notation

\[B = \{ f(x) : P(x) \} \]
\(f(x) \) = function of \(x \)
\(P(x) \) = predicate of \(x \)

\(\{ f(x) : P(x) \} \) = the set of \(x \) where \(P(x) \) is true, with \(f(x) \) applied to each element

Ex: \(A = \{ x^2 : x \text{ is even} \} = \{0^2, 2^2, 4^2, 6^2, \ldots \} \)
\(= \{0, 4, 16, 36, \ldots \} \)

\(A = \{ (2x)^2 : x \in \mathbb{Z} \} = \{(2 \cdot 0)^2, (2 \cdot 1)^2, (2 \cdot 2)^2, \ldots \} \)
\(= \{0, 4, 16, \ldots \} \)

\(A = \{x : x \in \mathbb{N} \land \sqrt[2]{x} \in \mathbb{Z} \} \)