Tree Method (Master Method)

Can be used to solve recurrences of the form:

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d) \quad \text{for } n > C \]

\[T(n) = O(1) \quad \text{for } n < C \]

Q: If \(T(n) \) is runtime of an algorithm, what are \(a, b, d \) in words?

A:
\(a \): number of recursive calls
\(b \): factor by which problem shrinks in recursive call
\(d \): characterizes extra work outside recursive call

Ex: \(a = 3 \), \(b = 5 \), \(d = 4 \)

\[O\left(\frac{n^4}{5}\right) \quad O\left(\frac{n^4}{25}\right) \quad O(1) \]

Input size: \(n \)

Proof of Master Method Page 1
Proof of Tree Method

Problem Size n

Level 0

Level 1

Level 2

Level F b b

Constant $= \frac{n}{b^F}$

Q. What is F (in terms of a, b, d)?

A) $O(\log_b n)$ B) $O(\log_a n)$ C) $O(n^{\log_b d})$ D) $O(b^{\log_a n})$
Proof of Tree Method

Problem Size n

- Level 0: Problem size n
- Level 1: $\frac{n}{b}$
- Level 2: $\frac{n}{b^2}$
- Level F: $\frac{n}{b^F}$

Q. What is F (in terms of a, b, d)?

A) $O(\log_b n)$ B) $O(\log_d n)$ C) $O(n^{\log_b d})$ D) $O(b^{\log_a n})$

Because at each level, problem size is divided by b. $\log_b n$ is the number of times n can be divided by b before reaching a constant.

$C = \frac{n}{b^F}$, so $b^F = \frac{n}{C}$, so $F = \log_b \left(\frac{n}{C}\right)$ constant

$= \log_b n - \log_b C$

$= O(\log_b n)$
Q. What is the work done just at level K, not at other levels?

1. a^k subproblems at level K.
2. Level K subproblem size: \(\frac{n}{b^k} \)
3. Work outside of recursive call required to solve 1 subproblem

\[\Rightarrow \text{Total work} \quad a^k \left(\frac{n}{b^k} \right)^d = \left(\frac{a}{b^d} \right)^k n^d \]

Now we add up work done at all levels:

\[
T(n) = n^d \left(\sum_{k=0}^{\log_b n} \left(\frac{a}{b^d} \right)^k \right)
\]

Geometric Series:

\[
\sum_{k=0}^{F} r^k = \begin{cases}
F+1 & \text{if } r = 1 \\
\frac{1-r^{F+1}}{1-r} & \text{otherwise}
\end{cases}
\]
Geometric Series:

\[
\sum_{k=0}^{F} r^k = \begin{cases}
F+1 & \text{if } r = 1 \\
\frac{1-r^{F+1}}{1-r} & \text{otherwise}
\end{cases}
\]
PSet:

\[T(n) = \begin{cases}
O(n^d \log n) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O(n^\log_b a) & \text{if } a > b^d
\end{cases} \]

This is usually called "master method" "master theorem"

Master has pretty unpleasant connotations. Also it is not descriptive

My term: "Tree method"

ex: Binary Search:

\[T(n) = T\left(\frac{n}{2}\right) + O(1) \quad a = 1 \quad b = 2 \quad d = 0 \]

\[T(1) = O(1) \]

\[T(n) = O(n^d \log n) = O(n^d \log n) \]

\[= O(n^d \log n) \]
We'll do one of the 3 cases here:

Case: \(a < b^d \)

\[
T(n) = n^d \left(\sum_{k=0}^{\log_b n} \left(\frac{a}{b^d} \right)^k \right) = n^d \left(\frac{1 - \left(\frac{a}{b^d} \right)^{\log_b n + 1}}{1 - \left(\frac{a}{b^d} \right)} \right)
\]

Constant. Can ignore for big-O

So as \(n \) gets big, \(r^{\log_b n + 1} \to 0 \)

\[
\text{ex: } (\frac{1}{3})^{10} = \frac{1}{3^{10}} \approx 0
\]

\[
1 - r^{\log_b n + 1} \to 1 \quad \text{for large } n.
\]

\(= O(n^d) \)
Big-O only tells you about relative scaling at large input sizes.

Even if you know C,k, still don't know anything. Infinitely many C,k work. One pair is not useful.

To know how algorithm will do on specific input, need to know actual time complexity function. Not just big-O or big-Θ, or big-Ω.