Goals

• Analyze the big-O of functions
• Analyze the worst-case run time of algorithms with loops
procedure insertion sort\((a_1, a_2, \ldots, a_n: \text{ real numbers with } n \geq 2)\)

for \(j := 2\) **to** \(n\)

\[i := 1\]

while \(a_j > a_i\)

\[i := i + 1\]

\[m := a_j\]

for \(k := 0\) **to** \(j - i - 1\)

\[a_{j-k} := a_{j-k-1}\]

\[a_i := m\]

\{\(a_1, \ldots, a_n\) is in increasing order\}

- Do a detailed calculation of worst case # of operations
- Do a rough analysis of # of operations
- Find \(C, k\) such that
 \[3x^2 - 10x + 10 = \Omega(x^2)\]
- Prove \(3x^2 - 10x + 10 \neq O(1)\)
Detailed Analysis

of operations = \[\sum_{j=2}^{n} \text{[work done inside for loop]} \]

= \[\sum_{j=2}^{n} \left[A + \sum_{i=1}^{j} B + \sum_{k=0}^{j-2} C \right] \]

= \[\sum_{j=2}^{n} \left[A + B j + C (j - 1) \right] \]

= \[\sum_{j=2}^{n} \left[A - C + (B + C) j \right] = \sum_{j=2}^{n} [A - C] + (B + C) \sum_{j=2}^{n} [j - 1] \]

In the worst case, while loop runs from \(i = 1 \) to \(j \)

In the worst case, \(i = 1 \), and for loop runs from \(k = 0 \) to \(j - 2 \)

\(A, B, C \) represent the constant amount of operations done in loops
Detailed Analysis

\[(A - C)(n - 1) + (B + C)\left(\sum_{j=2}^{n} j - \sum_{j=2}^{n} 1\right)\]

\[= (A - C)(n - 1) + (B + C)\left(\frac{(n+2)(n-2)}{2} - n - 1\right)\]

\[= O(n^2)\]
Rough Analysis

Outer loop runs at most n times.
Two inner loops, each runs at most n times
Otherwise operations are constant.
Total is $O(n^2)$
Big-O

- Find C, k such that \(3x^2 - 10x + 10 = \Omega(x^2)\)
 \[
 C = 1, k = 100
 \]

- Prove \(3x^2 - 10x + 10 \neq O(1)\)

 Assume for contradiction that there exists $k, C \in \mathbb{R}^+$ such that for all $x \geq k$, \(3x^2 - 10x + 10 \leq C\). If we consider a value x where $x \geq 11$, $x \geq k$, and $x \geq C$, we have \(3x^2 - 10x + 10 > 3x(x - 10) \geq 3C\). This contradicts that $3x^2 - 10x + 10 \leq C$ for all $x \geq k$.