Goals

• Write a strong inductive proof
• Identify when multiple cases are needed
Algorithm 1: \text{Sum}(A)

\textbf{Input} : List \(A \) of integers
\textbf{Output} : Sum of the elements of \(A \).

1 \(l = \text{length}(A) \);

// Base Case
2 \textbf{if} \(l \) equals 1 \textbf{then}
3 \hphantom{2} \text{return} \(A[1] \);
4 \textbf{else}
5 \hphantom{2} \text{// Recursive step}
6 \hphantom{3} \text{mid} = l/2, \text{rounded to next lowest integer if not an integer};
7 \hphantom{3} \text{return} \text{Sum}(A[1 : \text{mid}]) + \text{Sum}(A[\text{mid} + 1 : l]);
8 \hphantom{2} \text{// \(A[a : b] \) is a list of \(a \)th to \(b \)th elements of \(A \) inclusive.}
9 \text{end}
Proof By Strong Induction

Prove it takes \(n - 1 \) breaks to reduce an \(n \)-square chocolate bar to \(n \) individual pieces.

(Inductive step: Let \(k \geq _ \). Assume for strong induction that \(P(j) \) is true for all \(j \) such that \(_ _ _ _ _ _ _ _ _ _ \).)