def: Given a sample space S, a random variable X is a function $X: S \to \mathbb{R}$.

ex: Let S be the sample space consisting of all possible outcomes of 4 coin tosses. Let X be the number of heads that occur.

Q: What is $X(T,H,H,H)$? What is $X(T,T,H,T)$?

A: 1, 3 B: 2, 2 C: 3, 1 D: 4, 4

def: The expected or average value of a random variable X is

$$E[X] = \sum_{i \in S} \Pr(i) X(i).$$

Q: From previous example, what is $E[X]$? (The average number of heads in 4 coin flips.)

A) 1 B) 2 C) 2.5 D) 4
I’m guessing you didn’t do the following:

\[E[X] = \sum_{i \in S} \Pr(i)X(i) \quad (2^4 \text{ elements of sample space!}) \]

\[E[X] = \sum_{i \in S: X(i)=0} \Pr(i) \cdot 0 + \sum_{i \in S: X(i)=1} \Pr(i) + \sum_{i \in S: X(i)=2} \Pr(i) \cdot 2 \]

\[+ \sum_{i \in S: X(i)=3} \Pr(i) \cdot 3 + \sum_{i \in S: X(i)=4} \Pr(i) \cdot 4 \]

... good practice to finish on your own!

\[\Pr(i) = \frac{1}{2^4} = \frac{1}{16} \text{ in all cases.} \]

\[\left| \{i \in S: X(i)=0\} \right| = 1 \quad \left| \{i \in S: X(i)=2\} \right| = \binom{4}{2} = 6 \]

\[\left| \{i \in S: X(i)=1\} \right| = \binom{4}{1} = 4 \quad \left| \{i \in S: X(i)=3\} \right| = \binom{4}{3} = 4 \]

\[\left| \{i \in S: X(i)=4\} \right| = 1 \]

\[E[X] = \frac{1}{16} \left(1 \cdot 0 + 4 \cdot 1 + 6 \cdot 2 + 4 \cdot 3 + 1 \cdot 4 \right) \]

\[= \frac{1}{16} (32) = 2 \]

Instead you used indicator random variables + linearity of expectation (without knowing!)
Indicator Random Variable:

An **indicator random variable** X is a random variable such that $X : S \rightarrow \{0, 1\}$.

An indicator random variable is associated with an event $E \subseteq S$:

$$E = \{ i \in S : X(i) = 1 \}$$

Normally write as X_E where

$$X_E(s) = \begin{cases} 1 & \text{if } s \in E \\ 0 & \text{otherwise} \end{cases}$$

Then

$$E[X_E] = \sum_{i \in S} \Pr(i) \cdot X_E(i)$$

$$= \sum_{i \in S : X_E(i) = 0} \Pr(i) \cdot 0 + \sum_{i \in S : X_E(i) = 1} \Pr(i)$$

$$= \sum_{i \in E} \Pr(i) = \Pr(E)$$

$$E[X_E] = \Pr(E)$$
Linearity of Expectation

Let Y_1, Y_2, \ldots, Y_n be random variables on a sample space S. Let $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Let Y be a random variable s.t.

\[\forall i \in S, \quad Y(i) = \sum_{k=1}^{n} a_k Y_k(i) \]

Then

\[E(Y) = E\left(\sum_{k=1}^{n} a_k Y_k \right) = \sum_{k=1}^{n} a_k E(Y_k) \]

Ex: Let X_k be the indicator random variable that takes value 1 if k-th coin flip is Heads. Let $X = \#$ of heads in 4 coin tosses

Then

\[X = \sum_{k=1}^{4} X_k \]

\[\text{e.g. } X(H,T,T,H) = X_1(H,T,T,H) + X_2(H,T,T,H) + X_3(H,T,T,H) + X_4(H,T,T,H) = 2 \]

\[E[X] = \sum_{k=1}^{4} E[X_k] = \sum_{k=1}^{4} \Pr(\text{k-th flip is Heads}) \]

\[= \sum_{k=1}^{4} \frac{1}{2} = 2 \]