1. Describe the following sets in roster notation (list the first few elements). If the set is also “famous” give its symbol.

(a) $A = \{2^x : x \in \mathbb{N}\}$
(b) \(B = \{ x : x \text{ is even and } x \in \{1, 3, 5\} \} \)
(c) \(C = \{ x \geq 0 : x \text{ is even or } x \text{ is odd} \} \)

Solution
(a) \(A = \{1, 2, 4, 8, 16, \ldots \} \)
(b) \(B = \emptyset \)
(c) \(C = \{0, 1, 2, 3, 4, \ldots \} = \mathbb{N} \)

2. Let \(A = \{1, 2\} \) and \(B = \{1, 2, 3\} \)

(a) What is \(|A \times B|\)?
(b) Is \(A \subset B\)?
(c) Is \(A \subseteq B\)?
(d) Is \(A \subset A\)?
(e) What is \(A \setminus B\)?
(f) What is \(A \cup B\)?
(g) What is \(A \cap B\)?

Solution
(a) \(A \times B = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\} \), so \(|A \times B| = |A| \times |B| = 6 \).
(b) Yes. Both 1 and 2 are elements of \(B \).
(c) Yes. Both 1 and 2 are elements of \(B \).
(d) No. \(\subset \) cannot be used when the two sets are not equal.
(e) \(\emptyset \).
(f) \(B \). \(B \) already contains all the elements of \(A \), so adding those elements doesn’t do anything.
(g) \(A \). The elements of \(A \) are in both. Only 3 \(\in B \) but 2 \(\notin A \).

3. Let \(A \) and \(B \) be sets with \(|A| = |B| \) such that \(|A \cup B| = 7 \) and \(|A \cap B| = 3 \). What is \(|A| \)? Explain.

Solution \(7 = |A \cup B| = |A \cap B| + |A \setminus B| + |B \setminus A| \). But \(|A \setminus B| = |B \setminus A| \) because \(|A| = |B| \), so \(|A \setminus B| = 2 \) and \(|A| = |A \cap B| + |A \setminus B| = 5 \).

4. Find sets \(A \) and \(B \) such that \(A \subset B \) and \(A \in B \).

Solution For example, \(A = \{1, 2\} \), \(B = \{1, 2, 3, 4, \{1\}, 5\} \).